


Apress Pocket Guides



​Apress Pocket Guides present concise summaries of cutting-edge 

developments and working practices throughout the tech industry. Shorter 

in length, books in this series aims to deliver quick-to-read guides that are 

easy to absorb, perfect for the time-poor professional.

This series covers the full spectrum of topics relevant to the modern 

industry, from security, AI, machine learning, cloud computing, web 

development, product design, to programming techniques and business 

topics too.

Typical topics might include:

•	 A concise guide to a particular topic, method, function 

or framework

•	 Professional best practices and industry trends

•	 A snapshot of a hot or emerging topic

•	 Industry case studies

•	 Concise presentations of core concepts suited for 

students and those interested in entering the tech 

industry

•	 Short reference guides outlining ‘need-to-know’ 

concepts and practices.

More information about this series at https://link.springer.com/
bookseries/17385.

https://link.springer.com/bookseries/17385
https://link.springer.com/bookseries/17385


Beginning Spring AI
A Quick Guide to AI 

Engineering in Spring

Andrew Lombardi
Joseph Ottinger



Beginning Spring AI: A Quick Guide to AI Engineering in Spring

ISBN-13 (pbk): 979-8-8688-1290-3	 ISBN-13 (electronic): 979-8-8688-1291-0
https://doi.org/10.1007/979-8-8688-1291-0

Copyright © 2025 by Andrew Lombardi and Joseph Ottinger

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or 
part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, 
and transmission or information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal responsi-
bility for any errors or omissions that may be made. The publisher makes no warranty, express or 
implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Duffy
Development Editor: Laura Berendson
Coordinating Editor: Gryffin Winkler

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, 
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member 
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance 
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for 
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Print 
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is 
available to readers on GitHub (https://github.com/Apress). For more detailed information, 
please visit https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

Andrew Lombardi
Laguna Beach, CA, USA

Joseph Ottinger
Youngsville, NC, USA

https://doi.org/10.1007/979-8-8688-1291-0


For my wife, my artistic love, and our kids:  
the philosophers, adventurers, and creators who  

make life an endless adventure.



vii

Table of Contents

About the Authors���������������������������������������������������������������������������������xi

About the Technical Reviewer������������������������������������������������������������xiii

Acknowledgments�������������������������������������������������������������������������������xv

Introduction���������������������������������������������������������������������������������������xvii

Chapter 1: �Introduction�������������������������������������������������������������������������1

AI Is Everywhere����������������������������������������������������������������������������������������������������1

What Is AI, Really?��������������������������������������������������������������������������������������������������3

The Scope of This Book������������������������������������������������������������������������������������������6

How Can AIs Be Used?�������������������������������������������������������������������������������������������7

How Do You Choose an AI?�������������������������������������������������������������������������������������8

How Much Does It Actually Cost?��������������������������������������������������������������������������9

What This Book Isn’t��������������������������������������������������������������������������������������������11

Next Steps������������������������������������������������������������������������������������������������������������12

Chapter 2: �Getting Started�������������������������������������������������������������������13

The Project Structure�������������������������������������������������������������������������������������������13

Spring AI���������������������������������������������������������������������������������������������������������������22

Getting the OpenAI Key�����������������������������������������������������������������������������������23

Our First OpenAI Query�����������������������������������������������������������������������������������26

https://doi.org/10.1007/979-8-8688-1291-0_1
https://doi.org/10.1007/979-8-8688-1291-0_1
https://doi.org/10.1007/979-8-8688-1291-0_1#Sec1
https://doi.org/10.1007/979-8-8688-1291-0_1#Sec2
https://doi.org/10.1007/979-8-8688-1291-0_1#Sec3
https://doi.org/10.1007/979-8-8688-1291-0_1#Sec4
https://doi.org/10.1007/979-8-8688-1291-0_1#Sec5
https://doi.org/10.1007/979-8-8688-1291-0_1#Sec6
https://doi.org/10.1007/979-8-8688-1291-0_1#Sec7
https://doi.org/10.1007/979-8-8688-1291-0_1#Sec8
https://doi.org/10.1007/979-8-8688-1291-0_2
https://doi.org/10.1007/979-8-8688-1291-0_2
https://doi.org/10.1007/979-8-8688-1291-0_2#Sec1
https://doi.org/10.1007/979-8-8688-1291-0_2#Sec2
https://doi.org/10.1007/979-8-8688-1291-0_2#Sec3
https://doi.org/10.1007/979-8-8688-1291-0_2#Sec4


viii

Choosing a Different Model����������������������������������������������������������������������������������33

Temperature���������������������������������������������������������������������������������������������������������37

Conversations and Roles��������������������������������������������������������������������������������������48

Next Steps������������������������������������������������������������������������������������������������������������55

Chapter 3: �Asking Questions and Using Data��������������������������������������57

Interacting with an AI�������������������������������������������������������������������������������������������57

Working with the “Real World”����������������������������������������������������������������������������59

Providing Access to Your Data�����������������������������������������������������������������������������71

Building the Callable for Spring AI������������������������������������������������������������������73

Changing a Light��������������������������������������������������������������������������������������������81

Structured Output�������������������������������������������������������������������������������������������87

Applying This in Your Code�����������������������������������������������������������������������������������93

Next Steps������������������������������������������������������������������������������������������������������������93

Chapter 4: �Working with Audio������������������������������������������������������������95

Generating and Processing Audio������������������������������������������������������������������������95

The AI Spoken Word����������������������������������������������������������������������������������������96

Transcription�������������������������������������������������������������������������������������������������107

REST Example����������������������������������������������������������������������������������������������113

A Simple Voice Assistant������������������������������������������������������������������������������120

Next Steps����������������������������������������������������������������������������������������������������������131

Chapter 5: �Generating Images�����������������������������������������������������������133

Generating and Recognizing Images�����������������������������������������������������������������133

Image Generation�����������������������������������������������������������������������������������������141

Multimodality Recognition����������������������������������������������������������������������������147

Lights, Camera, AI�����������������������������������������������������������������������������������������153

Next Steps����������������������������������������������������������������������������������������������������������157

Table of Contents

https://doi.org/10.1007/979-8-8688-1291-0_2#Sec5
https://doi.org/10.1007/979-8-8688-1291-0_2#Sec6
https://doi.org/10.1007/979-8-8688-1291-0_2#Sec7
https://doi.org/10.1007/979-8-8688-1291-0_2#Sec8
https://doi.org/10.1007/979-8-8688-1291-0_3
https://doi.org/10.1007/979-8-8688-1291-0_3
https://doi.org/10.1007/979-8-8688-1291-0_3#Sec1
https://doi.org/10.1007/979-8-8688-1291-0_3#Sec2
https://doi.org/10.1007/979-8-8688-1291-0_3#Sec3
https://doi.org/10.1007/979-8-8688-1291-0_3#Sec4
https://doi.org/10.1007/979-8-8688-1291-0_3#Sec5
https://doi.org/10.1007/979-8-8688-1291-0_3#Sec6
https://doi.org/10.1007/979-8-8688-1291-0_3#Sec7
https://doi.org/10.1007/979-8-8688-1291-0_3#Sec8
https://doi.org/10.1007/979-8-8688-1291-0_4
https://doi.org/10.1007/979-8-8688-1291-0_4
https://doi.org/10.1007/979-8-8688-1291-0_4#Sec1
https://doi.org/10.1007/979-8-8688-1291-0_4#Sec2
https://doi.org/10.1007/979-8-8688-1291-0_4#Sec3
https://doi.org/10.1007/979-8-8688-1291-0_4#Sec4
https://doi.org/10.1007/979-8-8688-1291-0_4#Sec5
https://doi.org/10.1007/979-8-8688-1291-0_4#Sec7
https://doi.org/10.1007/979-8-8688-1291-0_5
https://doi.org/10.1007/979-8-8688-1291-0_5
https://doi.org/10.1007/979-8-8688-1291-0_5#Sec1
https://doi.org/10.1007/979-8-8688-1291-0_5#Sec2
https://doi.org/10.1007/979-8-8688-1291-0_5#Sec3
https://doi.org/10.1007/979-8-8688-1291-0_5#Sec4
https://doi.org/10.1007/979-8-8688-1291-0_5#Sec5


ix

Chapter 6: �Navigating AI in Engineering��������������������������������������������159

A Practical Exploration of AI-Aided Development����������������������������������������������159

Dangers in Applying AI in Engineering���������������������������������������������������������������161

Legal and Ethical Issues������������������������������������������������������������������������������������163

Data Visibility and Transparency������������������������������������������������������������������������164

Effective Prompt Engineering����������������������������������������������������������������������������165

Next Steps����������������������������������������������������������������������������������������������������������167

Index��������������������������������������������������������������������������������������������������169

Table of Contents

https://doi.org/10.1007/979-8-8688-1291-0_6
https://doi.org/10.1007/979-8-8688-1291-0_6
https://doi.org/10.1007/979-8-8688-1291-0_6#Sec1
https://doi.org/10.1007/979-8-8688-1291-0_6#Sec2
https://doi.org/10.1007/979-8-8688-1291-0_6#Sec3
https://doi.org/10.1007/979-8-8688-1291-0_6#Sec4
https://doi.org/10.1007/979-8-8688-1291-0_6#Sec5
https://doi.org/10.1007/979-8-8688-1291-0_6#Sec6


xi

Andrew Lombardi is a veteran entrepreneur 

and software engineer. He’s been running the 

consulting firm Mystic Coders for 25 years, 

authored multiple outstanding books on 

Spring for Apress and WebSocket for O'Reilly, 

coding, speaking internationally, and offering 

technical guidance to companies as large as 

Airbus and companies as controversial and 

unique as Twitter 1.0.  He firmly believes that the best thing he’s done so 

far is being a great dad.   

Joseph B. Ottinger is a distributed systems architect with experience 

in many cloud platforms. He was the editor-in-chief of both the Java 

Developer Journal and TheServerSide.com and has also contributed to 

many, many publications, open source projects, and commercial projects 

over the years, using many different languages (but primarily Java, Kotlin, 

Python, and JavaScript). He’s also a previously published author online 

(with too many publications to note individually) and in print, through 

Apress. 

About the Authors



xiii

Manuel Jordan Elera is an autodidactic 

developer and researcher who enjoys learning 

new technologies for his own experiments and 

creating new integrations. Manuel won the 

Springy Award 2013 Community Champion 

and Spring Champion. In his little free time, 

he reads the Bible and composes music on his 

guitar. Manuel is known as dr_pompeii. He 

has tech-reviewed numerous books, including 

Pro Spring MVC with WebFlux (Apress, 2020), 

Pro Spring Boot 2 (Apress, 2019), Rapid Java Persistence and Microservices 

(Apress, 2019), Java Language Features (Apress, 2018), Spring Boot 2 

Recipes (Apress, 2018), and Java APIs, Extensions and Libraries (Apress, 

2018). You can read his detailed tutorials on Spring technologies and 

contact him through his blog at www.manueljordanelera.blogspot.com. 

You can follow Manuel on his Twitter account, @dr_pompeii.      

About the Technical Reviewer

http://www.manueljordanelera.blogspot.com


xv

I would like to thank my family for supporting me during the writing of this 

book for the last few months along with crazy work running the company. 

I’d like to thank Joe for writing another book together which has turned out 

some pretty useful and interesting text as a team, our friends who remind 

me that there is also life outside of a screen and sunshine, rainbows, and 

the blinking cursor which is a prompt to keep going.

—Andrew Lombardi

I would like to thank whoever came up with the idea of thanking people 

in the front matter for books. Apparently, it’s been done for pretty much 

the entire history of literature, originally used to credit deities and 

other patrons, so maybe we get to thank the purveyors of bad copper 

somehow…. This has not been a good acknowledgments paragraph, so let 

me try to rescue it somehow: I’d like to thank my family for their constant 

and undeserved encouragement, Andrew for putting up with my oddball 

ideas, the various small animals I keep throwing seeds to in my backyard 

for keeping me amused and appreciative, my wife, Eden Hudson, and Jess 

Astra for reminding me sometimes what a joy it is to read as well as write, 

and most of all, you, dear reader, for being willing to learn and grow with 

us. And spaghetti. I almost forgot to thank spaghetti.

—Joseph Ottinger

Acknowledgments



xvii

Introduction

Welcome to Beginning Spring AI!
Artificial intelligence has rapidly evolved over the last several years, and 

its influence now reaches into virtually every corner of modern software 

development. From generating text and images on-demand to analyzing 

audio content and extracting meaningful insights, AI is no longer the next 

frontier—it’s a set of powerful tools ready to be applied right now. The 

Spring ecosystem, known for its robust and developer-friendly frameworks, 

has embraced this new era through Spring AI, a suite of libraries that serve 

as a gateway into the world of large language models (LLMs) and other 

advanced AI services.

�What Is Spring AI?
Spring AI represents a cohesive set of abstractions and utilities that bridge  

your Spring-based applications with leading AI platforms. By simplifying 

complex integrations, Spring AI empowers you to connect to popular text, 

image, and audio models using a standardized approach—eliminating 

the need to learn multiple proprietary APIs or wrestle with inconsistent 

data formats. Instead, you can leverage a consistent, Spring-friendly 

programming model to interact with models like ChatGPT, stable 

diffusion image models, and speech-to-text engines, all within the familiar 

boundaries of your existing Spring projects.



xviii

�What You’ll Learn in This Book
In this straightforward yet comprehensive guide, you will gain the practical 

knowledge and hands-on experience necessary to start building AI- 

enhanced applications right away. We begin by walking through project 

setup and configuration, ensuring you have a solid foundation for adding 

AI functionalities to your Spring-based environment.

	 1.	 Connecting to ChatGPT and Other Large 
Language Models
Learn how to integrate large language models 

into your workflow. From the straightforward task 

of handling simple text queries, you’ll progress 

toward generating structured content suitable for 

predictable, repeatable outputs. You’ll also see 

how LLMs can be granted controlled access to your 

proprietary data, enabling sophisticated chatbots 

and assistants capable of interacting with real-world 

systems—from inventory databases to IoT devices—

based on user input.

	 2.	 Audio Generation and Analysis
Move beyond text-based content and tap into the 

world of audio. Discover how to instruct an LLM 

to create audio outputs—from synthetic speech 

to sonic branding elements—and then learn how 

to analyze spoken words. This capability opens 

up possibilities such as creating voice interfaces, 

automated transcription services, and real-time 

sentiment analysis for customer support calls.

Introduction



xix

	 3.	 Visual Content Creation and Interpretation
Unleash the power of image-based AI models. 

You’ll see how to use LLMs to generate entirely new 

images or enhance existing ones. On the flip side, 

you’ll learn how to have an AI model interpret and 

describe visual content, making it possible for your 

applications to “see” and understand the world 

around them, from recognizing products in a catalog 

to summarizing complex diagrams for accessibility.

	 4.	 Ethical, Legal, and Cost Considerations
While the potential of AI is vast, it’s essential to 

understand its implications. We’ll address common 

concerns around the ethical use of AI, highlight 

privacy and compliance considerations, and discuss 

cost management strategies. You’ll gain the insights 

needed to responsibly build and deploy AI solutions 

that respect user data, operate transparently, and 

control expenses.

�Why Spring AI?
By the end of this book, you’ll have a toolkit that allows you to interact 

with multiple AI services through a single, coherent approach. Spring 

AI’s abstraction layers and its deep integration with the broader Spring 

ecosystem significantly reduce the learning curve. You’ll be able to plug 

into cutting-edge AI models using a codebase that is both approachable 

and maintainable—letting you focus on creating value instead of wrestling 

with technical minutiae.

Introduction



xx

�Your Journey Begins
As you turn the pages, you’ll progress from foundational setup tasks to 

crafting sophisticated, AI-driven features. You’ll discover not only how to 

leverage the capabilities of large language models but also how to integrate 

them seamlessly into real-world applications, from text-based assistants to 

voice-driven interfaces and vision-based analyzers.

Whether you’re a seasoned Spring developer looking to add AI to your 

skill set, or you’re new to the Spring ecosystem and want to start your 

journey at the cutting edge, this book is your guide to building smarter, 

more responsive, and more dynamic applications. Let’s dive in and 

uncover the power of Spring AI together!

Introduction



1© Andrew Lombardi and Joseph Ottinger 2025 
A. Lombardi and J. Ottinger, Beginning Spring AI, Apress Pocket Guides,  
https://doi.org/10.1007/979-8-8688-1291-0_1

CHAPTER 1

Introduction
Welcome to Beginning Spring AI!

“Spring AI” refers to a suite of libraries within the Spring Framework 

designed to help programmers harness some of the most popular artificial 

intelligence (AI) technologies available today.

In this book, we’ll take you on a guided tour of these libraries and their 

features. Our goal is not to provide a comprehensive reference on every 

feature but to offer enough information so you can see the potential of 

these technologies and use the majority of what you find most valuable.

Note  This chapter does not contain code. It lays a foundational 
understanding of AI, providing key definitions and concepts, as 
well as an overview of the technologies covered in this book. If you 
prefer diving right into the code, feel free to skip ahead to Chapter 2. 
However, we suggest revisiting this chapter later on, as it contains 
valuable insights that will enhance your understanding.

�AI Is Everywhere
It’s nearly impossible to browse the Internet today without encountering 

AI in some form. Whether it’s a simple search for information, or 

summarizing content, possibly writing prompts on Quora, or creating 

https://doi.org/10.1007/979-8-8688-1291-0_1#DOI
https://doi.org/10.1007/979-8-8688-1291-0_2


2

visual arts or music, AI is being applied across numerous domains. 

There are even entire songs generated by AI that some may find quite 

respectable.

For programmers, most IDEs now come with AI integrations, 

suggesting code completions and improvements. With the right prompts, 

it’s possible to have an AI generate substantial portions of a working 

application, causing some managers to wonder if they even need human 

engineers anymore.1

Authors also feel the impact of AI “writing.” Many tools now suggest 

grammar and spelling corrections, as well as more nuanced changes, to 

evoke a specific tone or style. AI can even write stories, and when given 

detailed prompts, the results can sometimes pass for human-written 

content.

Note  It’s worth noting for the record: This book has indeed been 
impacted by AI, and we’ll point out why and how later. We promise. At 
least, that’s what the AI said to say. Or did it write it? Sometimes it’s 
hard to tell.2

This raises an important question: Are humans being replaced by 

machines? If AI can create applications, music, or stories that rival human 

quality, then why do we need humans at all? There are several compelling 

answers to this, and some less convincing ones as well.

1 Spoiler alert: Yes, the managers do need human engineers. We’ll get to why soon, 
some in this chapter and some in Chapter 6.
2 This is intended to be humor. If an AI generates any actual content of note in this 
book, we’ll be pointing it out, even if it’s not obvious. With that said, when we say 
AI is used in many writing tools, we mean it; a lot of our grammar was checked 
and occasionally fixed by AI. It’s also worth noting that not even one of the 
footnotes was suggested by an AI—or, indeed, any human.

Chapter 1  Introduction

https://doi.org/10.1007/979-8-8688-1291-0_6


3

�What Is AI, Really?
Let’s start by clarifying what AI is. “Artificial intelligence” is a broad term 

with numerous applications, and we certainly won’t cover all—or even 

most—of them in this book.

Here’s how an AI (ChatGPT, using the GPT-4o model, specifically) 

summarized artificial intelligence:

Artificial Intelligence (AI) refers to the development
of computer systems that can perform tasks that normally
require human intelligence, such as learning, problem-solving,
and understanding language. At its core, AI uses mathematical
models to make decisions and predictions—ranging from
simpler approaches like Markov chains, which predict
sequences of events, to more complex systems like recommender
algorithms that suggest movies or products based on user
preferences. With advancements in AI, more sophisticated models
like Large Language Models (LLMs) have emerged, allowing
systems to understand and generate human-like text. These
models can be integrated into applications, such as those
built with Spring AI, to automate and enhance various
tasks across industries.

Not bad, ChatGPT! This example demonstrates a “good use” of AI: 

providing a generally concise and relevant summary on a topic. The 

prompt used here asked for a brief description of AI’s evolution, focusing 

on widely adopted technologies like Large Language Models (LLMs), 

which we’ll explore further in this book.

In the end, it’s all literally math, as the paragraph suggested: an input 

is reduced to a series of numbers, and the AI …​ does something with those 

numbers (what it does depends on the type of AI and its purpose). It then 

generates more numbers, and those numbers map to an output—and that 

applies to nearly every AI model, including the one that generated that 

paragraph.

Chapter 1  Introduction



4

Some of the earliest uses of AI models—early enough that some might 

scoff at the reference to them as “artificial intelligence”—were for tasks like 

weather prediction or making simple probabilistic decisions.

One simple modeling type is the Markov chain, for example, which is 

a model that generates a likely outcome based on a string of inputs. This 

is actually fairly useful in predicting weather with few variables, and that’s 

actually how it worked.

Consider: if it’s raining today, what’s the likelihood of it raining 

tomorrow? If it was raining yesterday, does that change the likelihood 

of rain at all? What if it’s been raining heavily for a week? Consider also 

the history of the region being predicted; if it rains every day in June, for 

example, and it’s June, and it’s been raining every day so far, can rain 

tomorrow be predicted? A Markov chain reduces the history to a series 

of tokens (which might combine the day of the year, the region, and the 

weather for that day) and have a set of outcomes that says “95% of the time, 

when the prior condition looks like this, the next day will look like that.”

Markov chains are also useful for generating text; the ELIZA program3 

emulates a therapist similar to Carl Rogers, by taking significant parts of 

what you say to it and repeating those parts back to you, in a few different 

combinations.

Most Markov chains use some form of probability to calculate the 

transitions between states; Bayesian algorithms found a lot of use in early 

attempts to filter email spam, to quite a bit of success, although obviously 

spammers have found ways to avoid easy detection.

If probabilities don’t sound like “artificial intelligence,” well, that’s fine, 

but it’s generally unfair. Probabilities rule much of our lives; when we go 

for a drive, we look at our fuel and calculate how likely it is that we’ll need 

to purchase more, or when, or whether we’ll need to take an umbrella or a 

coat, after all.

3 An example of ELIZA can be found at https://web.njit.edu/~ronkowit/eliza.
html. Try it! It’s fun! Beware: it might make you think of your mother.

Chapter 1  Introduction

https://web.njit.edu/~ronkowit/eliza.html
https://web.njit.edu/~ronkowit/eliza.html


5

AI also has a sort of “magic appeal” in how difficult it can be to 

understand what’s going on behind an invocation. In the end, it’s all math, 

but …​ what math? And if it’s math, well, do we need AI?

The answer is, as you might suspect, “it depends.” “What math?” is 

answered by another question: “What are you trying to do?” An LLM 

does a lot of stemming and tokenization4 to reduce a prompt to a series of 

numbers, which generates some amusing outcomes sometimes.5 A Markov 

chain gauged toward weather would have no sensible output to an input 

that asked what 1+1 was—it’s simply too sensitive to its problem domain.

It’s also important to keep in mind that the reason we have so many 

models and definitions is because there are so many applications, some 

appropriate and some not.

It’s an aphorism that “when all you have is a hammer, everything 

looks like a nail.” As of this writing, this feels like an accusation; it’s rather 

common to see “can we throw an AI at it?” as a response to problems that, 

honestly, don’t need all that much computation power.

For example, in medicine, a cardiologist named Lee Goldman came 

up with three simple questions to try to determine if a patient was having 

a heart attack. His fellow doctors were sure that they, being experts, had 

a better set of questions and tests to evaluate a patient’s status, but actual 

tests showed that Goldman’s three questions were 70% better at detecting 

4 Stemming and tokenization here refer to the process of reducing words to 
common, small forms: “machinations,” for example, gets stemmed to “machin” as 
a reduced form, then that gets translated to a token—usually a simple number—
for internal representation.
5 A few weeks ago as of this writing, it was a meme about AI that the LLMs couldn’t 
tell how many occurrences of the letter “R” were in the word “strawberry.” To us, 
it’s obviously three; to the LLM, however, it was counting based on the tokenized 
version of the word, which had two Rs, not three, and it ended up looking 
hopelessly confused, even when corrected.

Chapter 1  Introduction



6

heart attacks, plus they were far quicker to ask than the alternatives.6 

Using an AI to detect heart attacks might work—but as with Dr. Goldman’s 

three questions, the simple approach might be faster, cheaper, and more 

effective than the shiny technology. This would be a poor application of 

the resources and power of AI.

That’s not to say that you shouldn’t use artificial intelligence, at all: it’s 

more an observation that AI is a tool, and like most tools, it has appropriate 

uses and can be overused, and given the current enthusiasm around a 

term that few seem to understand, is often overused.

�The Scope of This Book
This book delves into the integration of advanced AI models—including 

Large Language Models (LLMs), as well as audio and visual processing 

models—using the Spring Framework.

While LLMs transform textual prompts into meaningful textual responses 

through complex mathematical computations, AI’s capabilities are not limited 

to text. In this book, you will also learn how to process and generate audio and 

visual data using AI models. Specifically, Chapters 4 and 5 focus on feeding 

audio and visual inputs into these models and retrieving corresponding 

outputs. By the end of this book, you’ll be prepared to handle a variety of 

data types—textual, auditory, and visual—within your Spring Framework 

applications.

6 Malcolm Gladwell, Blink: The Power of Thinking without Thinking, Back Bay 
Books, 2007.

Chapter 1  Introduction

https://doi.org/10.1007/979-8-8688-1291-0_4
https://doi.org/10.1007/979-8-8688-1291-0_5


7

�How Can AIs Be Used?
AIs are effectively information blenders; you give them a filter (the 

prompt), and they generate a probabilistic outcome based on the 

information on which they were trained.

Therefore, selecting a model can be of critical importance. (You 

wouldn’t want to use a model trained primarily on fantasy literature to 

make medical conclusions.7)

One way to think about the output of an LLM is as if it were selected at 

random based on what other people might have said, as if the LLM were to 

take all of the possible answers to your prompt, stir them together and pick 

elements at random, and then present the result in a cohesive manner.

This is why stories written by an AI tend to be faintly familiar: they 

are! They’re taking common elements of storytelling and replacing bits 

as they go, and the result can feel original at times while feeling horribly 

derivative at other times. That doesn’t mean the story isn’t worth telling—

most stories in human history have a similar set of concepts at their hearts, 

as Joseph Campbell8 might have told you—but it also isn’t the same as 

coming up with “original content.”

But with this observation—that AIs are stirring up knowledge we 

already had in possibly unexpected ways to come up with content—it’s 

worth saying that this is useful.

7 However, you might want an AI trained on a sufficient medical dataset to provide 
initial conclusions. AIs lack doctors’ biases and can often see the problem as it is, 
without a doctor’s presumptions or preferences factoring in. With that said, this is 
not a recommendation to avoid your doctor.
8 Joseph Campbell wrote a book in 1949 called The Hero with a Thousand Faces 
that described a common set of concepts in human mythology, often summed up 
as the “Hero’s Journey.” See https://www.amazon.com/Thousand-Faces- 
Collected-Joseph-Campbell/dp/1577315936 for more.

Chapter 1  Introduction

https://www.amazon.com/Thousand-Faces-Collected-Joseph-Campbell/dp/1577315936
https://www.amazon.com/Thousand-Faces-Collected-Joseph-Campbell/dp/1577315936


8

Sometimes things we want to know are “hiding in plain sight,” 

obscured by tradition and expectation, and an AI can abstract over 

arbitrarily large amounts of information; it can see common patterns that 

humans can overlook, and without models being specifically limited in 

what they can observe, an AI is able to point out the emperor’s lack of 

clothing with ease9 fairly easily.

For this book, ChatGPT was used as the AI of choice, and it was also 

used to evaluate content and tone. Unless specifically pointed out, the 

words you are reading were written by an actual human person and were 

evaluated by an AI to suggest revisions and additions, some of which were 

accepted.

�How Do You Choose an AI?
That’s a good question! As with others, the answer is “it depends on what 

you want,” combined with what you want to spend and the cost of using a 

given AI service.

There are a lot of choices:

Name Source Url

ChatGPT OpenAI https://chatgpt.com

Meta Facebook https://meta.ai

Grok X https://x.ai/

Amazon Bedrock Amazon https://aws.amazon.com/bedrock/

Claude Anthropic https://claude.ai/

Ollama Open Source https://ollama.com/

9 For reference, if you’re unfamiliar: “The Emperor’s New Clothes” is a story 
by Hans Christian Andersen, and a workable summary can be found online at 
https://en.wikipedia.org/wiki/The_Emperor%27s_New_Clothes.

Chapter 1  Introduction

https://chatgpt.com
https://meta.ai
https://x.ai/
https://aws.amazon.com/bedrock/
https://claude.ai/
https://ollama.com/
https://en.wikipedia.org/wiki/The_Emperor%27s_New_Clothes


9

That’s just a few of the options.

Most of them use a similar API endpoint (after all, they do have a 

pretty common usage pattern), but their capabilities aren’t quite the same; 

Ollama, for example, doesn’t support audio or image generation as of this 

writing in and of itself, while ChatGPT certainly does.

This is actually why you’d want to use Spring AI: it abstracts much of 

the low-level APIs into a common framework. There are areas in which you 

are coding to a specific AI, particularly when setting the options for how it 

generates content, but that’s usually it, and those features can often be set 

by configuration rather than being set specifically in code.

As far as choosing an AI: this book primarily focuses on using ChatGPT, 

because it was one of the first major vendors for AI services using a Large 

Language Model, and it’s remarkably sufficient for a general-purpose 

AI without being absurdly expensive. Ollama has the benefit of running 

locally, if you have a sufficient GPU; it can run without a GPU, in CPU 

mode, but tends to result in very slow response times.

With that said, the main way to make a decision about which AI to use 

is to try them for your purpose.

Work out your application’s purpose, write tests that submit to your AI 

of choice, and see how it performs against other LLMs, and balance the 

response time and cost against your needs.

�How Much Does It Actually Cost?
The popular AIs (apart from Ollama, which runs locally, and thus is “free” 

outside of the cost of the hardware used to run it) have various pricing 

models. They’re typically based on the amount of power it requires to 

process various prompts and types of prompts, so generating images 

might have a different cost based on image size and the complexity of the 

prompt, while text prompts only deal with the complexity of the prompt 

and its answer.

Chapter 1  Introduction



10

In addition to the prompts, the models used for processing have their 

own costs, so a high-quality, large model from a provider is likely to cost 

more than a simple, fast model from the same provider. There are lots of 

providers, each with their own pricing structures, so you should take a little 

time and look at the requirements you have: the pricing model for OpenAI, 

the host of ChatGPT and the service used most often in this book, has a 

pricing model that can be found at https://openai.com/api/pricing/.

This book uses a lot of very short AI prompts, generally, so the token 

counts for the entire book, added together, work out to probably under a 

thousand tokens.10

If you run the entire book’s tests over and over again, that adds up, but 

it’s still not a lot.

If you’re doing a lot of detailed analysis covering a lot of data, your 

token counts will be higher, and you might run into costs associated with 

analysis; Chapter 3 covers some ways to mitigate this, but in the end, if you 

need a certain number of tokens to achieve a task, you…​ need a certain 

number of tokens to achieve a task, and your selection of a model and 

provider will be balanced against your requirements.

The short version of all of that: expect a relatively minor cost, and 

watch your typical usage to try to predict whether you need additional 

capacity or not. If you do need more capacity, consider whether you have 

the resources to run Ollama locally (meaning that you have a decent GPU 

and RAM, and a fast disk), and try it.

The advantage of external AI providers is that they have massive server 

farms to throw at tasks, meaning that you can work with larger models 

and expect faster response times, with more features; the disadvantages of 

external providers are that they can see your prompts (and how that’s used is 

up to the provider; read the fine print!) and you have to pay for their services.

10 This is a guess. We could calculate it, because interactions with an LLM include 
token counts in the response metadata, but for this book, it’s just not worth the 
effort. Your mileage may vary.

Chapter 1  Introduction

https://openai.com/api/pricing/
https://doi.org/10.1007/979-8-8688-1291-0_3


11

�What This Book Isn’t
This book is going to cover a lot of code, of course, being a book about 

Spring AI. However, it presumes you know Java to some degree and have 

some familiarity with the Spring Framework (and Spring Boot) already.

It requires you to have Java and Maven installed, although handy links 

will be provided just in case you don’t.11

This book does not require an IDE. You’ll want one, we think, but …​ 

which one? We don’t know, and don’t care. You can use a simple text 

editor, if that’s what you desire, or IDEA, or Eclipse (or the Spring Tool 

Suite, which is based on Eclipse), or NetBeans, or Visual Studio Code; we 

offer these names as they occurred to us to write, not as an indication of 

preference in any way.

The book also generally focuses on tests as a way to demonstrate 

technique. There are a few places where there’s an application to execute 

(particularly in Chapter 4, which provides a web-based application to 

convert text to speech), but the primary demonstration is in setting 

expectations of output given a specific set of inputs and validation of 

that output.

When the code compiles and the tests pass, the code works. Otherwise, 

there’s not a lot to demonstrate, so there aren’t a lot of screenshots to look 

for. (Given the nature of probabilistic outputs from LLMs, though, there are 

places where you might be expected to look at a generated string to make 

sure it fits your expectations, although we’re generally trying to avoid this.)

11 Your authors have no idea why books on programming have to walk through 
basic things like “installing your language of choice,” but if you don’t have some of 
that, the technical reviewers whine about it.

Chapter 1  Introduction

https://doi.org/10.1007/979-8-8688-1291-0_4


12

It’s also not a book that’s exhaustively going to cover every AI 

technique—or even every possibility of how to work with a given AI 

model. It’s focused on the most common applications of AI, and other 

applications and models are more advanced topics that are better covered 

by other materials.12

LLMs have different capabilities and settings; part of why we chose 

ChatGPT was because ChatGPT covers the features that most people want, 

and other AIs may or may not provide the same set of features, but few 

other AIs provide features ChatGPT does not. Readers who wish to use 

alternatives should be able to fine-tune the example code for their specific 

AI implementation without too much effort. (And if it takes a lot of effort, 

feel free to reach out to your authors; we’re very interested in helping the 

industry move forward!)

We’re also not covering exhaustive techniques in terms of how the AIs 

are being interacted with. Most of the uses of AI are through simple back- 

and-forth conversations, and while we will be covering “conversations,” 

we’re not going into streaming techniques that have things like LLMs 

feed back information as it’s being generated—this is useful for emulating 

human behavior (“See, it’s typing right now!”) but complicates the 

interactions drastically, and complicated code tends to hide the intent 

behind what the code is doing.

�Next Steps
In our next chapter, we’re going to walk through setting up a project that 

includes calling ChatGPT through Spring AI.13

12 Honest truth: Your author considered having an AI rewrite that sentence.
13 It would not be difficult to use any other AI provider, but again, this book uses 
ChatGPT, because it’s very common, well known, and very predictable—and it 
definitely provides all of the services the book covers.

Chapter 1  Introduction



13© Andrew Lombardi and Joseph Ottinger 2025 
A. Lombardi and J. Ottinger, Beginning Spring AI, Apress Pocket Guides,  
https://doi.org/10.1007/979-8-8688-1291-0_2

CHAPTER 2

Getting Started

�The Project Structure
This book is organized as a single Maven1 project, using Java 21.2 Installing 

these tools is beyond the scope of this book; consider asking tools like 

ChatGPT for advice for your operating system!

Maven uses a fairly verbose object model, written with XML, to 

describe projects. This was chosen here because it involves fewer files (a 

pom.xml can describe a project completely) and Maven has demonstrated 

excellent compatibility across versions, whereas Gradle—the other 

popular build tool for the JVM—has much shorter build scripts but uses 

multiple build scripts for each project, and it’s focused more on feature sets 

than compatibility.

We don’t have a preference between Maven or Gradle in reality, but in 

a book, tool stability is critical.

1 Maven can be found at https://maven.apache.org/. It’s one of the two most 
popular build tools for the JVM ecosystem.
2 As this book is being written, Java 21 is the current release of Java with long-term 
support. There are lots of ways to download Java, but which one is best depends 
on your skill level and operating system. In a pinch, you can find it at https://
jdk.java.net/21, but readers of this book are likely to already have a JVM 
installed. We only included this footnote because every other book has stuff on 
installing tools and we didn’t want to feel left out.

https://doi.org/10.1007/979-8-8688-1291-0_2#DOI
https://maven.apache.org/
https://jdk.java.net/21
https://jdk.java.net/21


14

This book’s project is called bsai-code. It contains modules, named 

after each chapter, so the top-level project contains modules named 

chapter02, chapter03, and so forth. The top-level project serves to 

centralize the dependencies that every module needs, which means that 

in our case it makes sure the Spring dependencies are consistent.

Each chapter has a directory structure, an effective standard across 

Java projects, that looks like this.

Listing 2-1.  The standard Maven directory structure

.

./src

./src/main/java

./src/main/resources

./src/test/java

./src/test/resources

This can be created in the “project directory” with the following 

command, if you’re running a POSIX shell like bash or zsh.

Listing 2-2.  Creating the project directory structure in POSIX

mkdir -p src/{main,test}/{java,resources}

This is all fairly standard for Java programmers; it’s being included here 

for completeness more than anything else. Project listings are offsets from 

the “book’s project directory,” so the following listing is in the “top level” 

directory.

Listing 2-3.  pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

Chapter 2  Getting Started



15

         http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>3.3.0</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>

    <groupId>com.apress</groupId>
    <artifactId>bsai-code</artifactId>
    <version>1.0</version>
    <packaging>pom</packaging>

    <modules>
        <module>chapter02</module>
        <module>chapter03</module>
        <module>chapter04</module>
        <module>chapter05</module>
    </modules>

    <properties>
        �<project.build.sourceEncoding>UTF-8</project.build.

sourceEncoding>
        <java.version>21</java.version>
        <spring-ai.version>1.0.0.M2</spring-ai.version>
        <kotlin.version>2.0.20</kotlin.version>
    </properties>

    <dependencyManagement>
        <dependencies>
            <dependency>
                <groupId>org.springframework.ai</groupId>
                <artifactId>spring-ai-bom</artifactId>

Chapter 2  Getting Started



16

                <version>${spring-ai.version}</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>
        </dependencies>
    </dependencyManagement>

    <dependencies>
        <dependency>
            <groupId>org.jetbrains.kotlin</groupId>
            <artifactId>kotlin-stdlib-jdk8</artifactId>
            <version>${kotlin.version}</version>
        </dependency>
        <dependency>
            <groupId>org.jetbrains.kotlin</groupId>
            <artifactId>kotlin-test</artifactId>
            <version>${kotlin.version}</version>
            <scope>test</scope>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                �<artifactId>spring-boot-maven-plugin 

</artifactId>
                <configuration>
                    <skip>true</skip>
                </configuration>
            </plugin>

Chapter 2  Getting Started



17

            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-surefire-plugin</artifactId>
                <version>3.3.0</version>
            </plugin>
            <plugin>
                <groupId>org.jetbrains.kotlin</groupId>
                <artifactId>kotlin-maven-plugin</artifactId>
                <version>${kotlin.version}</version>
                <executions>
                    <execution>
                        <id>compile</id>
                        <phase>compile</phase>
                        <goals>
                            <goal>compile</goal>
                        </goals>
                    </execution>
                    <execution>
                        <id>test-compile</id>
                        <phase>test-compile</phase>
                        <goals>
                            <goal>test-compile</goal>
                        </goals>
                    </execution>
                </executions>
                <configuration>
                    <jvmTarget>1.8</jvmTarget>
                </configuration>
            </plugin>
        </plugins>
    </build>

Chapter 2  Getting Started



18

    <repositories>
        <repository>
            <id>spring-milestones</id>
            <name>Spring Milestones</name>
            <url>https://repo.spring.io/milestone</url>
            <snapshots>
                <enabled>false</enabled>
            </snapshots>
        </repository>
        <repository>
            <id>spring-snapshots</id>
            <name>Spring Snapshots</name>
            <url>https://repo.spring.io/snapshot</url>
            <releases>
                <enabled>false</enabled>
            </releases>
        </repository>
    </repositories>
</project>

This is this chapter’s project file, and thus it’s in a directory under the 

top-level directory, called chapter02, and the file is named pom.xml. It’s 

fairly straightforward in and of itself, including the dependencies we need 

to access Spring AI: the OpenAI starter (spring-ai-openai-spring-boot-
starter), spring-boot-starter-web because we need some classes from 

it to provide services for OpenAI, a test starter (spring-boot-starter- 
test, excluding an android JSON library because we don’t need it and 

Spring will warn us about duplication otherwise), and commons-math3, 

because we’ll want to use some simple mathematics operations later in 

this chapter and we don’t want to have to write the code ourselves.

Chapter 2  Getting Started



19

Listing 2-4.  chapter02/pom.xml

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
         http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>com.apress</groupId>
        <artifactId>bsai-code</artifactId>
        <version>1.0</version>
    </parent>

    <artifactId>chapter02</artifactId>
    <version>1.0</version>

    <properties>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.springframework.ai</groupId>
            �<artifactId>spring-ai-openai-spring-boot-starter 

</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>

Chapter 2  Getting Started



20

            <scope>test</scope>
            <exclusions>
                <exclusion>
                    �<groupId>com.vaadin.external.google 

</groupId>
                    <artifactId>android-json</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.apache.commons</groupId>
            <artifactId>commons-math3</artifactId>
            <version>3.6.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.commons</groupId>
            <artifactId>commons-text</artifactId>
            <version>1.12.0</version>
        </dependency>
        <dependency>
            <groupId>com.google.guava</groupId>
            <artifactId>guava</artifactId>
            <version>33.2.1-jre</version>
        </dependency>
    </dependencies>
</project>

Note T he dependency on spring-boot-starter-web is due to 
the way the Spring AI modules are being developed. As this book was 
being written, there was an implicit requirement for classes in the 

Chapter 2  Getting Started



21

web module, as opposed to an explicit transient requirement, so we 
have to include this on our own. By the time you use Spring AI, this 
requirement may have changed.

We’ll want one more file to save ourselves a lot of unnecessary 

duplication: an .env file. This file is going to hold our OpenAI access key. 

This is a token provided by OpenAI to keep track of usage and capabilities, 

and we’ll detail how to get it in the next section of this chapter; most of 

the providers have a similar value, and getting their access keys may differ 

slightly. In each case, however, this is a simple name/value pair, and this 

file goes into the root of our project structure.

Listing 2-5.  .env

OPENAI_API_KEY=[your-api-key-value-here]

Thus, we should have a project structure that looks like this, so far.

Listing 2-6.  The project structure early in Chapter 2

> tree
.
├── .env
├── chapter02
│   ├── pom.xml
│   └── src
│       ├── main
│       │   ├── java
│       │   └── resources
│       └── test
│           ├── java
│           └── resources
└── pom.xml

Chapter 2  Getting Started

https://doi.org/10.1007/979-8-8688-1291-0_2


22

All that’s very exciting and good, but it’s time to actually write some 

code and show some basic functionality.

�Spring AI
Spring AI builds around the idea of a Model. A model accepts a request and 

feeds back a response in some format; chat models use text, and there are 

also image models and audio models. There’s even a model abstraction to 

provide for mechanisms that haven’t necessarily been anticipated yet.3

There are variants for even the coarse abstractions: a chat model, 

for example, has a blocking version and a streaming version, where the 

blocking version returns a “complete answer” and the streaming version 

returns the answer in intermediate steps, much as a human would as they 

type out a response.

In simplest form, to use Spring AI, you acquire a model, with 

appropriate configuration to inform the model of what sources to use, and 

issue a call to get the response. That sounds so simple that we should build 

something and test it out.

Note  We’ve chosen to use OpenAI for the base service for this 
book. As Chapter 1 mentioned, this is a commercial service; you’ll 
need to set up an API key for use, and in the process of running the 
examples in this book, you will consume resources on OpenAI that 
may incur a cost. This was done because OpenAI is commercial and 
predictable. We know the resources it has available. Ollama is free 

3 Imagine an AI that responds with peanut butter and jelly sandwiches! …​ or don’t, 
we don’t mind.

Chapter 2  Getting Started

https://doi.org/10.1007/979-8-8688-1291-0_1


23

but has very high demands in terms of hardware; it is certainly 
possible to use Ollama instead of OpenAI, but we chose to focus on 
reproducible results for the reader; OpenAI tends to be faster and 
doesn’t rely on the reader having a relatively high-end CPU/GPU 
combination with plenty of disk space.

We need to build a configuration first. This is done in two places: the 

.env file mentioned in the prior section (see Listing 2-5) and in a Spring 

configuration class.

�Getting the OpenAI Key
To get your OpenAI key, you’ll need to go to https://platform.openai.
com/ and create an account. From there, you’ll go to “Settings”—the gear 

on the page—and see this screen:

The OpenAI settings screen

Chapter 2  Getting Started

https://platform.openai.com/
https://platform.openai.com/


24

We need to use a project key, so select “Create project” in the menu on 

the left hand side of the page.

 

Creating a project on OpenAI.com

Enter a project name that makes sense for you (we chose “Beginning 

Spring AI”), and you’ll see a page with a project key on it, like this:

Chapter 2  Getting Started



25

 

The Project settings on OpenAI.com

The next thing we need to do is create an API key. In the profile, it gives 

you a chance to manage the permissions for various keys; as this is being 

written, this defaults to managing the API keys per user, but this is being 

deprecated for the use of project keys.

Warning T his is all under active development, so the user interface 
may have changed since this was written.

Select the project in the top of the window (where we have “Beginning 

Spring AI”), and you’ll see an option for “API keys” on the right side. 

Selecting this link gives you a chance to create new secrets—the API keys 

you need. When you generate these, save them somewhere safe—and use 

set the value in the .env file for use by Spring AI. The value you’ll want 

should look like sk-proj- followed by a number of other letters.

If you lose this key, all you need to do is create a new one—but OpenAI 

doesn’t show you the keys again, so keep track of it.

Chapter 2  Getting Started



26

The value in the “Project ID” field is what we’ll put in the .env file.

 

The API settings page

That’s a lot of setup! Thankfully, we won’t need to do it more than once 

for this book, unless the original secret key is lost. It’s time to code.

�Our First OpenAI Query
The first thing we need to handle in any Spring application is the 

application configuration itself. Spring has a lot of very flexible approaches 

to configuration, and those approaches deserve their own book.4 We’re 

going to use a simple approach to Spring configuration, so our application 

will look as simple as possible.

4 In fact, Spring configuration not only deserves its own book, but there are 
multiple books that cover Spring configuration very well.

Chapter 2  Getting Started



27

Listing 2-7.  chapter02/src/main/java/ch02/Ch02Configuration.java

package ch02;

import
org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Ch02Configuration {
}

That’s it. We’re going to use @Service to mark resources that Spring 

will scan and configure for us. With that said, it’s time to look at how Spring 

AI’s ChatClient actually works.

A ChatClient uses a Prompt to interact with the language model. A 

Prompt might be as simple as a block of text but can configure what model 

is being used, the accepted variability of the response, and a host of other 

options. These can be controlled at the point of the request, in code, but 

we can also control them in our application properties. We’ll need to set 

the API key, in any event, so let’s take a look at some of the more useful 

properties we can set for Spring AI. (Spring has many, many settings 

available, depending on what modules you choose to use; we’re only 

looking at Spring AI here.)

Chapter 2  Getting Started



28

Property name Description

spring.ai.openai.api-key The API key to be used by the application

spring.ai.openai.chat.
options.temperature

This determines the variability of the 

responses. A high temperature means the 

model generates more diverse answers, and 

a low temperature means the answers are 

more deterministic.

spring.ai.openai.chat.
options.model

This is the name of the model to use. This 

addresses the type of trainings used as well 

as the cost of the trainings used. The model 

names, and their prices, can be found at 

https://openai.com/api/pricing/; 

see Chapter 1 for more discussion of how 

this is relevant and how it’s calculated.

Note A stute readers will see the use of openai in those properties. 
Each specific Spring AI implementation has its own variation of these 
values; if you’re using Ollama, for example, you’d set the default 
model with spring.ai.ollama.chat.options.model instead.

There are certainly more options that can be played with, of course, 

and we’ll cover them as needed.

Typically, we’re going to center on an inexpensive and relatively 

low-powered model (gpt-3.5-turbo) for this book, because we’re more 

concerned with how the Spring AI API works with the models, rather than 

being concerned with the output of the models themselves.

We need to at least provide the API key to our chapter’s code, and 

we want the model to be as deterministic as possible for now, so here’s 

our application.properties. This is all very test-centric, so we’re 

Chapter 2  Getting Started

https://openai.com/api/pricing/;
https://doi.org/10.1007/979-8-8688-1291-0_1


29

going to place it in chapter02/src/test/resources. Note the use of 

spring.config.import, which allows us to load our .env file’s values for 

internal use.

Listing 2-8.  chapter02/src/test/resources/application.properties

spring.config.import=file:../.env[.properties]

spring.ai.openai.api-key=${OPENAI_API_KEY}
spring.ai.openai.chat.options.temperature=0.0
spring.ai.openai.chat.options.model=gpt-3.5-turbo
spring.ai.retry.max-attempts=4

Let’s take a look at a simple chat “client”—a test that demonstrates how 

we might wish to interact with class that uses Spring AI. (We’re going to 

look at the client next, we promise.)

This test is fundamentally simple: it loads the Spring configuration for 

testing and issues a simple request to OpenAI. We’re going to ask a question 

about the speed of a particular kind of boat carrying tea in a specific body 

of water; we don’t care about the actual response, but given that we’re 

setting spring.ai.openai.chat.options.temperature to 0.0, we expect 

the answers to be pretty consistent across requests, and we can example the 

output for expected values to determine if the query response is “right.”

Listing 2-9.  chapter02/src/test/java/ch02/Ch02FirstTests.java

package ch02;

import ch02.service.FirstChatService;
import org.junit.jupiter.api.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import static org.junit.jupiter.api.Assertions.assertTrue;

Chapter 2  Getting Started



30

@SpringBootTest(webEnvironment = SpringBootTest.
WebEnvironment.MOCK)
public class FirstTests {
    �private final Logger log = LoggerFactory.getLogger(this.

getClass());
    @Autowired
    FirstChatService firstChatService;

    @Test
    void runSimpleQuery() {
        var response = firstChatService.query(
                �"what is the speed of a typical junk carrying 

tea in November?\n" +
                �"Assume clear weather and standard currents in 

the south China sea."
        );
        log.info(response);
        �assertTrue(response.toLowerCase().contains("south 

china sea"));
    }
}

For the record, the response OpenAI gave for this prompt as this 

chapter was being written was: “The speed of a typical junk carrying 

tea in November in the South China Sea can vary depending on various 

factors such as the size of the junk, the wind conditions, and the currents. 

However, on average, junks can travel at speeds ranging from 5 to 10 knots 

(5.75 to 11.5 mph) in calm weather conditions.”

This is mildly fascinating in and of itself, but note how we’re having 

to phrase the query. This book isn’t about writing efficient or effective 

queries, but we’re going to modify how this prompt is constructed to make 

it a little more targeted for our purposes over time.

Chapter 2  Getting Started



31

Of course, we can’t run this yet, because we don’t have 

FirstChatService implemented.

Our FirstChatService has one public method in it, query(String), 

which returns a String. This method represents the essential mechanism 

that every call in Spring AI will follow, although there are a lot of variations 

we can apply.

First we have to have a Client available (in this case, a ChatClient). 

We’ll use Spring’s dependency injection to get a ChatClient.Builder 

provided, as one is automatically provided by Spring AI.

Next, to issue a call, we build a Prompt; there are a number of 

variations here, but we’re going to use the simplest first, and rely on the 

default options from application.properties to determine temperature 

and model.

Once we have a prompt, we issue a call to the API, whether blocking or 

streaming; in this case, we don’t care about streaming, so we use call() to 

get the response specification.

Once we have the response specification, we can get the simple 

content by using the content() method; this is a short form of 

getResult().getOutput().getContent(). If we wanted to, we could get 

metadata about the call like the number of tokens consumed on our API 

key and a few other interesting elements.

This sounds pretty straightforward, so let’s see what the actual Java 

class looks like.

Listing 2-10.  chapter02/src/main/java/ch02/service/

FirstChatService.java

package ch02.service;

import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.stereotype.Service;

Chapter 2  Getting Started



32

import java.util.Objects;

@Service
public class FirstChatService {
    protected final ChatClient client;

    FirstChatService(ChatClient.Builder builder) {
        this.client = builder.build();
    }

    public final String query(String query) {
        Objects.requireNonNull(query);

        var prompt = new Prompt(query);

        var request = client
                .prompt(prompt);

        var responseSpecification = request.call();

        return responseSpecification.content();
    }
}

Now we actually have something we can test. We can run this chapter’s 

test suite by using Maven:

mvn -am -pl chapter02 clean test

If everything works properly, we should see output that looks 

something like this screenshot, in part:

 

The output from Ch02FirstTests

Chapter 2  Getting Started



33

�Choosing a Different Model
The model being specified here is, as mentioned, gpt-3.5-turbo, which is 

an inexpensive, somewhat dated model. There are many different models 

to choose from, with the “most current” on OpenAI being the gpt-4o 

model. We could set it as the default in application.properties, but we 

can also provide options to the Prompt and set it there. Let’s see that in 

action, with a OptionChatService that allows us to provide ChatOptions, 

and then we’ll show a test that uses it.

Listing 2-11.  chapter02/src/main/java/ch02/service/

OptionChatService.java

package ch02.service;

import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.openai.OpenAiChatOptions;
import org.springframework.stereotype.Service;

import java.util.Objects;

@Service
public class OptionChatService extends FirstChatService {

    OptionChatService(ChatClient.Builder builder) {
        super(builder);
    }

    �public final String query(String query, OpenAiChatOptions 
options) {

        Objects.requireNonNull(options);
        Objects.requireNonNull(query);

        var prompt = new Prompt(query, options);

Chapter 2  Getting Started



34

        var request = client
                .prompt(prompt);

        var responseSpecification = request.call();

        return responseSpecification.content();
    }
}

This overloads the query method from FirstChatService to also 

accept an OpenAiChatOptions instance. To use it, all we have to do is pass 

it to the creation of the Prompt. After that, the call follows the same pattern 

as we saw in FirstChatService to the letter.

As with the openai properties in our configuration file, different Spring 

AI libraries have different capabilities. We’re targeting OpenAI here, but 

there are variants for the other LLM implementations that reflect the 

options those services provide. There is a ChatOptions object that exposes 

generalized parameters—like temperature—but not every LLM allows 

us to select a model on the fly like OpenAI does, so we’re going to limit 

ourselves to the OpenAiChatOptions type here.

Astute readers might wish to invert the service’ calls, such that 

query(String) constructs a default ChatOptions and passes it to the more 

flexible query(String, OpenAiChatOptions) method. This makes a lot of 

sense, and in a “real project” that would certainly be advisable—but in a 

“real project” you wouldn’t have multiple instances like this. This code is 

being constructed for the purpose of education, not an example to follow.5

Let’s show this in action, and let’s set the model to gpt-4o. There are 

other options we can set—temperature, for example—and we’ll see that 

next. Let’s keep ourselves looking at the model for now.

5 It’s not an example to follow unless you’re writing your own book, we suppose, 
and if you follow our example there, consider us flattered.

Chapter 2  Getting Started



35

Listing 2-12.  chapter02/src/test/java/ch02/Ch02OptionTests.java

package ch02;

import ch02.service.OptionChatService;
import org.junit.jupiter.api.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.openai.OpenAiChatOptions;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import static org.junit.jupiter.api.Assertions.assertTrue;

@SpringBootTest(webEnvironment = SpringBootTest.
WebEnvironment.MOCK)
public class OptionTests {
    �private final Logger log = LoggerFactory.getLogger(this.

getClass());
    @Autowired
    OptionChatService optionChatService;

    @Test
    void runSimpleQuery() {
        var response = optionChatService.query(
                �"what is the speed of a typical junk carrying 

tea in November?\n" +
                �"Assume clear weather and standard currents in 

the south China sea.",
                OpenAiChatOptions.builder()
                        .withModel("gpt-4o")
                        .build()
        );

Chapter 2  Getting Started



36

        log.info(response);
        �assertTrue(response.toLowerCase().contains("south 

china sea"));
    }
}

If you’re writing the code yourself as we go through the book, the 

command to execute all of the tests in this chapter is:

mvn -am -pl chapter02 clean test

The output for this execution is relatively variable (thanks to the 

default temperature of queries), but one run locally generated this output6:

The speed of a typical junk (a traditional Chinese sailing 
ship) carrying tea in the South China Sea can vary based on 
several factors, including the design of the junk, the skill of 
the crew, and the specific weather and sea conditions. However, 
under clear weather and standard currents, a traditional 
junk might typically travel at speeds ranging from 4 to 8 
knots (approximately 4.6 to 9.2 miles per hour or 7.4 to 14.8 
kilometers per hour).

It's important to note that these speeds are general estimates 
and can vary. Modern adaptations or motorized junks could 
achieve different speeds.

6 We’re going to stick on the subject of junks, which are, according to Wikipedia, 
“a type of Chinese sailing ship characterized by a central rudder, an overhanging 
flat transom, watertight bulkheads, and a flat-bottomed design.” The subject was 
chosen mostly to avoid referring to African laden swallows, which—let’s be real—
nobody cares about.

Chapter 2  Getting Started



37

�Temperature
We’ve described temperature as “determining the variability of the 

responses” from a language model. It turns out that there are two 

parameters that have similar effects on how an LLM generates content: 

one is temperature, and the other is top_p, which refers to “probability 

mass.” Both refer to how content is selected by the LLM.

Lower top_p and temperature values indicate less variability in the 

responses. The ranges for the values are slightly different: top_p refers 

to a percentage of things to consider (so 0.10 means “consider the most 

relevant tokens” and 1.0 would mean “don’t filter tokens at all”), and 

temperature refers to how tokens are selected, with a range from 0.0 to 

2.0, where 2.0 indicates very high variability.

One would use either top_p or temperature—you don’t normally use 

them both. (However, it’s not going to be a programmatic error to set them 

both—the documentation isn’t clear on what happens in the service itself 

when both are used.)

Specifying either one is trivial: in the code where we build the 

OpenAiChatOptions, simply include a temperature value, for example:

var options=OpenAiChatOptions.builder()
    .withModel("gpt-4o")
    .withTemperature(1.0f)
    .build();

We use the archaic 1.0f form for the float because Java is strongly 

typed, and the actual parameter is a Float—which the compiler won’t 

normally translate 1.0, a double, to a Float for us. Normally, Java’s strong 

typing works in our favor, but the use of Float in the API makes this 

slightly problematic, if by “problematic” we mean that we have to use the 

narrower type.

Chapter 2  Getting Started



38

There are two questions to ask here: one is “What does this mean for 

our code?” and the other is “What actual impact does it have?”—with the 

latter question being more important.

It’s not easy to answer, in a concrete sense. Both temperature and 

top_p serve as inputs for the language model, basically “churning the 

water” for output. The top_p parameter, for example, controls what 

elements are selected for generating output: if you imagined a list of colors 

ordered by popularity, top_p might provide a way to suggest selecting 

the more popular colors rather than the colors at random (by limiting the 

selection to the “top colors,” so to speak.) Temperature also refers to how 

things are selected in the model.

As a result, a higher temperature or top_p value provides a wider 

range of inputs for the generation of a response, which makes it “more 

variable.”

So how do we measure this, such that we can demonstrate it?

What we need to do is have a way to describe similarity between 

blocks of text. This is, luckily for us, a known thing. There are lots of 

ways to measure similarity, but we’re going to use a simple one, called a 

Jaccard similarity, which is basically a measure of the number of common 

elements between two sets against the measure of elements that they don’t 

have in common.7

To build the corpus, the body text, for similarity, we’re going to extract 

n-grams from text; n-grams are sequences of tokens in a specific order. 

An example of a set of n-grams of length two from the, well, definition of 

n-grams might look like this:

n-grams are

7 To learn more about Jaccard similarity, see https://www.learndatasci.com/
glossary/jaccard-similarity/—and there are definitely other ways to measure 
similarities between texts, but a Jaccard similarity is effective enough for our 
purposes and it’s relatively little code, so you’re not having to pore through seven 
pages of Lucene example code.

Chapter 2  Getting Started

https://www.learndatasci.com/glossary/jaccard-similarity/
https://www.learndatasci.com/glossary/jaccard-similarity/


39

are sequences
sequences of
of tokens
tokens in
in a
a specific
specific order

If you built n-grams of length three, you’d get this set:

n-grams are sequences
are sequences of
sequences of tokens
of tokens in
tokens in a
in a specific
a specific order

We can compare the set of n-grams generated from “constant” 

queries—queries with very low temperature or top_p values—and 

compare them to queries with higher variability. If our supposition is 

correct—that the higher values have higher variability—we should see 

increasing variations in those sets of n-grams over time.

Let’s create a Spring bean to give us a Jaccard similarity score.

Listing 2-13.  chapter02/src/main/java/ch02/service/JaccardSimila

rityCalculator.java

package ch02.service;

import org.springframework.stereotype.Service;

import java.util.*;

@Service

Chapter 2  Getting Started



40

public class JaccardSimilarityCalculator {
    �public double calculateJaccardSimilarity(String text1, 

String text2, int ngramSize) {
        // Preprocess texts
        �Set<String> set1 = new HashSet<>(preprocessText(text1, 

ngramSize));
        �Set<String> set2 = new HashSet<>(preprocessText(text2, 

ngramSize));

        // Calculate intersection
        Set<String> intersection = new HashSet<>(set1);
        intersection.retainAll(set2);

        // Calculate union
        Set<String> union = new HashSet<>(set1);
        union.addAll(set2);

        // Calculate Jaccard similarity
        return (double) intersection.size() / union.size();
    }

    �private Set<String> preprocessText(String text, int 
ngramSize) {

        String[] tokens=text.toLowerCase().split("\\W+");
        Set<String> ngrams = new HashSet<>();
        for (int i = 0; i <= tokens.length - ngramSize; i++) {
            StringBuilder ngram = new StringBuilder();
            for (int j = 0; j < ngramSize; j++) {
                ngram.append(tokens[i + j]).append(" ");
            }
            ngrams.add(ngram.toString().trim());
        }
        return ngrams;
    }
}

Chapter 2  Getting Started



41

This is fairly easy to demonstrate, and we don’t trust code without 

tests—or we shouldn’t—so let’s see it in action, before we apply it to our 

conversations with an LLM.

Listing 2-14.  chapter02/src/test/java/ch02/JaccardTests.java

package ch02;

import ch02.service.JaccardSimilarityCalculator;
import org.junit.jupiter.params.ParameterizedTest;
import org.junit.jupiter.params.provider.Arguments;
import org.junit.jupiter.params.provider.MethodSource;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import java.util.stream.Stream;

import static org.junit.jupiter.api.Assertions.assertEquals;

@SpringBootTest
public class JaccardTests {
    @Autowired
    JaccardSimilarityCalculator calculator;

    public static Stream<Arguments> texts() {
        return Stream.of(
                Arguments.of(
                        �"This is some cool text. More is better 

but this will do.",
                        �"This is some cool text. More is better 

but this will do.",
                        1.0),
                Arguments.of(
                        �"Now is the time for all good men to 

come to the aid of their country.",

Chapter 2  Getting Started



42

                        �"The quick brown fox jumped over the 
lazy dog's tail.",

                        0.0),
                Arguments.of(
                        �"This is some cool text. More is better 

but this will do.",
                        �"This is some cool text. More is better 

but this might do.",
                        0.7)
                );
    }

    @ParameterizedTest
    @MethodSource("texts")
    �public void testTexts(String text1, String text2, double 

expected) {
        �var similarity = calculator.calculateJaccardSimilarity(

text1, text2,2);
        assertEquals(expected, similarity, 0.1);
    }
}

Here, we have a parameterized test, a JUnit feature that allows us to 

specify a list of arguments that we can throw at a single method. We have 

three sets of data: one set is a comparison of identical texts, that should 

have a very high similarity, and another set of texts (that we typed very 

quickly, thank you very much) that have relatively little similarity. Their 

n-grams are just too different, which is what we expect.

The similarity of 1.0 for the first input means those texts are likely to be 

identical (as, in fact, they are, but similarity scores usually trim out things 

like incidental words and punctuation, which we’re not quite doing here).

Chapter 2  Getting Started



43

The similarity score of 0.00 means that the second set of inputs are 

very different, as we expect, since the number of common n-grams is 

very low.

Our last test has one word of difference—this will do and this 
might do—which means we have two n-grams that differ. Here are the 

n-grams (with a size of 3) for those last two inputs:

First input Second input Same?

this is some this is some yes

is some cool is some cool yes

some cool text some cool text yes

cool text more cool text more yes

text more is text more is yes

more is better more is better yes

is better but is better but yes

better but this better but this yes

but this will but this might no

this will do this might do no

Anyway, now we have a pattern that we can use to throw at an LLM, 

with different temperature and top_p values, and we can measure those 

parameters’ effect on the results.8

Our methodology here is relatively simple. We’re going to test both 

top_p and temperature, increasing the value for multiple queries, and 

measure the similarity to our initial response.

8 And you readers probably thought we just wanted to type “Jaccard” out a lot, to 
show off, didn’t you?

Chapter 2  Getting Started



44

What we expect is that the first test (the initial response, compared 

to the initial response) is very similar (as it should be, being the same 

content), and as we increase the temperature, our similarity score should 

decrease. We don’t know that it will decrease, because that’s how sampling 

mechanisms work—we might just happen to get an identical response by 

random chance—but we expect that overall the similarity should decrease.

With top_p it’s a lot harder to measure, because of the nature of our 

query, but we’re going to try anyway—we expect the slope to be close to 

0 or negative but not necessarily negative, because top_p really changes 

the selection set for the data and not the variability of the data the way 

temperature does—but we’re going to take a look at it anyway.

We use a SimpleRegression to calculate the slope of the similarity to 

measure this. The way this works is that we basically plot the similarity 

score along an X/Y axis; the “sample number” is the X axis and the 

“similarity” is the Y axis. We expect the numbers to go down along the X 

axis; thus, we expect a negative slope, even if a given point along the X axis 

is higher than its precedent.

Let’s take a look at our actual test.

Listing 2-15.  chapter02/src/test/java/ch02/VariabilityTests.java

package ch02;

import ch02.service.JaccardSimilarityCalculator;
import ch02.service.OptionChatService;
import org.apache.commons.math3.stat.regression.SimpleR
egression;
import org.junit.jupiter.params.ParameterizedTest;
import org.junit.jupiter.params.provider.Arguments;
import org.junit.jupiter.params.provider.MethodSource;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.openai.OpenAiChatOptions;

Chapter 2  Getting Started



45

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import java.util.ArrayList;
import java.util.stream.Stream;

import static org.apache.commons.lang3.StringUtils.*;
import static org.junit.jupiter.api.Assertions.assertTrue;

@SpringBootTest(webEnvironment = SpringBootTest.
WebEnvironment.MOCK)
public class VariabilityTests {
    �private final Logger log = LoggerFactory.getLogger(this.

getClass());
    @Autowired
    JaccardSimilarityCalculator calculator;
    @Autowired
    OptionChatService optionChatService;

    �String query = "Write a story about a salamander learning 
to fly.";

    public static Stream<Arguments> controlParameters() {
        return Stream.of(
                Arguments.of(true, 0.0f, 2.0f),
                Arguments.of(false, 0.01f, 0.3f)
        );
    }

    @ParameterizedTest
    �@MethodSource("controlParameters")
    �void testTemperatures(boolean temp, float lower, float 

upper) {
        var results = new ArrayList<String>();

Chapter 2  Getting Started



46

        var regression = new SimpleRegression();
        �// we're going to reuse the same options instance, but 

change its parameters.
        var options = OpenAiChatOptions.builder().build();
        �for (float value = lower; value < upper; value += 

(upper - lower) / 7) {
            if (temp) {
                options.setTemperature(value);
            } else {
                options.setTopP(value);
            }
            var result=optionChatService.query(query, options);
            /*
            If you'd like to see what's generated by the AI,
            �uncomment the following line. Be prepared for
            a lot of content, though.
             */
            // System.out.println(result);
            results.add(result);
        }
        for (int i = 1; i < results.size(); i++) {
            var c = calculator.calculateJaccardSimilarity(
                    results.getFirst(),
                    results.get(i),
                    2);
            log.info("{}: {}", graph(c), c);
            regression.addData(i, c);
        }

Chapter 2  Getting Started



47

        var slope = regression.getSlope();
        �// slope should be negative to indicate less 

similarity...
        // although top_p is less predictable here
        log.info("Slope: {}", slope);
        assertTrue(slope < (temp ? 0.0 : 0.05));
    }

    private String graph(double c) {
        return rightPad(repeat("*", (int) (c * 20)), 22, " ");
    }
}

When we run this, we get a happy little graph of stars that demonstrate 

the similarity. The numbers will vary quite a bit based on each individual 

run; it’s quite possible that you might get a test failure because the LLM 

just happens to generate some outputs with higher similarities. With that 

said, though, we haven’t gotten many actual test failures based on the 

similarities going up.

Note  With that said, we have gotten test failures, particularly with 
top_p. It’s because of the way these values work: they change 
the sampling data for the language models, so sometimes you get 
variable results. if you run these tests and get failures, it’s not entirely 
unexpected, just like a test of a random number generator should 
give you an equal distribution of results but occasionally the universe 
just says, "no, you’re getting similar numbers back for a while." 
Getting that kind of result consistently is bad, but it does happen.

Chapter 2  Getting Started



48

�Conversations and Roles
What we’ve seen so far is a fairly simple query mechanism, a rough 

analogy to a single query to a given LLM, although we’ve given ourselves a 

way to control how variable a given response might be. That’s useful, but 

not very; it means that every query exists in a sort of standalone universe.9

Given that LLMs are presented as conversational, it’s time for us to see 

how that works and how we can manage a conversation with Spring AI.

We’ve used a very simple Prompt object, one accepting a String (and, 

perhaps, a ChatOptions object). This is useful but very simple—too simple, 

really, except for simple uses as we’ve shown so far.

What new Prompt("When was Churchill in office") does is 

relatively simple, but very instructive: that particular constructor delegates 

to a different constructor, that accepts a UserMessage with the contents of 

that string.

So what, then, is a UserMessage? It’s a message from, of all things, 

a user. This implies that there are other types of messages, and there 

certainly are. They’re actually rather important, in various ways, for 

building a conversation with an LLM.

There are three main types of messages in the LLM space right now: 

one is user. Another is assistant, and the third is system.

We actually have seen assistant messages already; that’s the 

role assigned to messages from the LLM. Therefore, when we ask an 

LLM “What is the definition of a Chinese junk?”, that query is sent as 

conversation with that element being from the user role, and the answer 

comes back as a message from the assistant role.

We can actually build a series of messages as our prompt, assigning the 

appropriate roles as we like, using UserMessage and establishing context 

with AssistantMessage instances from the system.

9 Our “variability tests” with temperature relied on each query being standalone.

Chapter 2  Getting Started



49

The first thing we need to do is to create a service that accepts a 

List of messages, because our other services are geared around simple 

queries with one input only. Thankfully, this is entirely supported by 

Prompt, which has a constructor that accepts List<Message>; our new 

UpdateChatService will do little more than handle the plumbing of 

constructing the actual Prompt and returning the response.

Listing 2-16.  chapter02/src/main/java/ch02/service/

ConversationChatService.java

package ch02.service;

import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.messages.Message;
import org.springframework.ai.chat.model.Generation;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.openai.OpenAiChatOptions;
import org.springframework.stereotype.Service;

import java.util.List;

@Service
public class ConversationChatService extends 
OptionChatService {
    ConversationChatService(ChatClient.Builder builder) {
        super(builder);
    }

    public List<Generation> converse(List<Message> messages) {
        �return converse(messages, new OpenAiChatOptions.

Builder().build());
    }

Chapter 2  Getting Started



50

    public List<Generation> converse(
            List<Message> messages,
            OpenAiChatOptions options
    ) {
        var prompt = new Prompt(messages, options);
        �return client.prompt(prompt).call().chatResponse().

getResults();
    }
}

The test class for this is a little larger than some of our other classes so 

far. Let’s take a look.

Listing 2-17.  chapter02/src/test/java/
ch02/ConversationTests.java

package ch02;

import ch02.service.ConversationChatService;
import org.apache.commons.text.WordUtils;
import org.junit.jupiter.api.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.chat.messages.AssistantMessage;
import org.springframework.ai.chat.messages.Message;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.model.Generation;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import java.util.ArrayList;
import java.util.List;

import static org.junit.jupiter.api.Assertions.assertTrue;

Chapter 2  Getting Started



51

@SpringBootTest(webEnvironment = SpringBootTest.
WebEnvironment.MOCK)
@TestMethodOrder(MethodOrderer.OrderAnnotation.class)
public class ConversationTests {
    �private final Logger log = LoggerFactory.getLogger(this.

getClass());
    @Autowired
    ConversationChatService conversationChatService;

    /**
     �* This method extracts the `AssistantMessage` from the 

generated LLM output
     * @param output the results of the call to the LLM
     * @return the first `AssistantMessage` in the output
     */
    �private AssistantMessage getAssistantMessage(List 

<Generation> output) {
        return output.getFirst().getOutput();
    }

    /**
     �* This method simply wraps the content and dumps it to 

a logger.
     * @param content A string to display
     */
    private void display(String content) {
        var lines = WordUtils
                .wrap(content, 62, "\n", true)
                .split("\\n");
        for (String line : lines) {
            log.info(line);
        }

Chapter 2  Getting Started



52

        log.info("-----");
    }

    @Test
    @Order(1)
    void simpleConversation() {
        �var conversation = conversationChatService.

converse(List.of(
                �new UserMessage("What is the slope of y=x*1.2/z 

if z=2?")
        ));
        var output = getAssistantMessage(conversation);

        display(output.getContent());
        assertTrue(output.getContent().contains("0.6"));
    }

    @Test
    @Order(2)
    void interactiveConversation() {
        �// we want to make a mutable list, because we're adding 

context.
        List<Message> messages = new ArrayList<>();
        messages.add(
                �new UserMessage("What is the slope of y=x*1.2/z 

if z=2?")
        );
        �var conversation = conversationChatService.

converse(messages);
        var output = getAssistantMessage(conversation);

        display(output.getContent());
        assertTrue(output.getContent().contains("0.6"));

Chapter 2  Getting Started



53

        �// we want to establish the context of the 
first answer.

        messages.add(output);

        �// now we want to add some extra context of our own...
        messages.add(
                new UserMessage("And if z=3?")
        );
        �conversation = conversationChatService.

converse(messages);
        output = getAssistantMessage(conversation);
        display(output.getContent());

        assertTrue(output.getContent().contains("0.4"));
    }
}

The first part of the test has some utility methods that we’ll want: one is 

a convenience method to help us extract the AssistantMessage returned 

by the API, and the other is a display method to dump wrapped output to a 

logger. Neither one is necessary, but they’re handy to have around.

Next we have simpleConversation(), a test method that validates 

that ConversationChatService is able to replicate the functionality we 

expect our services to have: can we ask an LLM a simple question? We’re 

pretending to be math-challenged for this test, because that gives us a 

concrete answer we can look for; if our output doesn’t have the actual 

answer to our question, we want to fail the test.

The real test is interactiveConversation(). This method has a lot of 

bits in it, so let’s deconstruct it.

The first part of interactiveConversation() replicates 

simpleConversation(); the main difference is that it constructs a 

List<Message> and uses that with the UpdateChatService, instead 

of constructing an immutable List in place. We also preserve the 

AssistantMessage.

Chapter 2  Getting Started



54

After we validate (and display) the output, we add the 

AssistantMessage to the messages. Thus, it’s a List with two entries: a 

UserMessage (our original query) and an AssistantMessage that has the 

LLM explaining the slope of our equation. We then refine our query by 

changing a parameter, but with a question that has no context in and of 

itself: we alter the value of z with another UserMessage.

Consider what is happening here: we’re asking And if z=3? with 

nothing else; if you walked up to a mathematician—or asked an LLM—that 

simple question, out of the blue, they’d rationally ask you for more context.

In fact, we did exactly that with ChatGPT:

 

Asking a math question without context

So now we have a valid way to test: by appending And if z=3? as a 

UserMessage with the prior context of our initial question and the LLM’s 

response, we can see if it factors in the conversation.

Note T his is not a perfect test. Ideally, we’d have the LLM infer 
something not in our question and use that for future context in the 
conversation. Given that we all understand this, why doesn’t our test 
apply context from the LLM as well? The answer is simple: "Because 
it’s much harder to test." Our series of questions here have objective 
answers, and having the LLM alter the context makes the answers 
subjective, and we really want to actually test something instead of 
displaying it and hoping it works out.

Chapter 2  Getting Started



55

To actually make all this work, we simply add another UserMessage 

(with the text And if z=3?) to the list of messages, and create another 

interaction with the LLM. This gives the LLM a chance to examine the 

context of the question (including our first query and its original answer) 

and give us the revised response.

We can also use SystemMessage as part of the conversation. A 

system message is an edict for the LLM to factor in; it can be similar to a 

UserMessage in impact, but in general a system message is more likely 

to have a persistent impact over the entire conversation; a UserMessage 

might, for example, change the conversational mode to Diogenes instead, 

but a SystemMessage is harder for the user to override.

This is an interesting example—but we can take it further, and we will, 

in the next chapter. Our ConversationTests example shows context as 

part of the conversation, but our test looks for a very simple answer—”does 

the result contain this bit of text that represents what we expect?” and we 

can do better. It’s one of the more compelling features of Spring AI, and 

we’re going to look at it in our next chapter, where we discuss concrete 

data extraction.

�Next Steps
In our next chapter, we’re going to look at Spring AI’s output converters, 

where we can get the LLM to give us structured data for our program to 

consume directly, along with some mechanisms for allowing the AI to 

gather data from our programs.

Chapter 2  Getting Started



57© Andrew Lombardi and Joseph Ottinger 2025 
A. Lombardi and J. Ottinger, Beginning Spring AI, Apress Pocket Guides,  
https://doi.org/10.1007/979-8-8688-1291-0_3

CHAPTER 3

Asking Questions 
and Using Data
In our last chapter, we explored setting up our project and querying an 

LLM. In this chapter, we’re going to explore two other important aspects of 

the LLM infrastructure—getting structured data out of them and feeding 

data to an LLM on demand by way of providing functions.

It may seem odd to think about providing access points to an AI, but 

this is a crucial lever for applying what the LLMs can do for you.

�Interacting with an AI
For the most part, AIs consist of data and a reasoning process about 

that data. The model tends to be fairly static, as creating a model is 

expensive in terms of resources, and models tend to be focused on 

spheres of knowledge. Most of the popular models, like gpt4-o (one 

of the commercial models from ChatGPT), are huge and focused on 

generalized knowledge; they might be good for the questions you ask, 

or they might not. Other models, like Github’s Copilot or the Qwen 

models, are designed for coding, and some are finely tuned for specific 

programming languages.

https://doi.org/10.1007/979-8-8688-1291-0_3#DOI


58

The key feature of all of these, however, is that they were trained—note 

the past tense. Most of them provide information about when they were 

trained, to give some context to what they know, and many of them will 

also answer time-sensitive questions about current events by informing 

you that their training data didn’t include recent history.

 

Asking an LLM about current events

The LLM isn’t wrong—checking local calendars or social media isn’t 

a bad strategy!—but it limits the AI to being a useful but fairly passive 

research tool.1

The problem, then, lies in how to provide access of, well, something, 

to the LLM. It’s not just data or current events, it’s a matter of providing 

interactions to the LLM, such that it can find out something that 

its knowledge model does not have or provide functionality that it 

shouldn’t have.

1 What’s more, given the nature of how LLMs work, even as a research tool, 
it requires verification, about which most responsible LLMs will explicitly 
remind you.

Chapter 3  Asking Questions and Using Data



59

This is how one might be able to use ChatGPT as it is today to query 

order status or perhaps even make an order.

�Working with the “Real World”
We can build a working example of something you might find in the real 

world by thinking of smart lights. There are many commercial examples 

of smart lightbulbs on the market today, and one can work with them 

in multiple ways, whether with Alexa, Nest, the custom apps associated 

with each brand, or home controller applications like openHAB2 or Home 

Assistant.3

We’re going to build something like openHAB: we’re going to create a 

Spring service to control software “light bulbs,” and then we’ll provide ways 

to query and control them through interactions with OpenAI.

Note I t would be fairly trivial to take our planned light bulb manager 
and migrate to work with actual light bulbs. This is something one 
of your authors did for a living. It’s actually rather fun, but we’re not 
going to assume our readers have a specific brand of smart lights4 
or that they want to annoy their wives by changing the lights through 
fooling around with software, either.

2 openHAB can be found at https://www.openhab.org/.
3 Home Assistant’s home page is https://www.home-assistant.io/.
4 The Matter API (https://developers.home.google.com/matter) actually 
helps synchronize a lot of smart device controls, but Matter’s API requires a lot 
of investment, and that’s out of the scope of this book. Apart from Matter, you’re 
writing to a set of specific manufacturers’ specifications, and that’s difficult to 
generalize and often inconsistent, to boot. Our software emulations carry the day 
for simplicity and consistency and, well, cost.

Chapter 3  Asking Questions and Using Data

https://www.openhab.org/
https://www.home-assistant.io/
https://developers.home.google.com/matter


60

With that said, let’s get started. First, we need our directory structure 

and our pom.xml.

Listing 3-1.  Creating the directory structure in a POSIX shell

# in a POSIX shell
mkdir -p chapter03/src/{main,test}/{java/ch03,resources}

The pom.xml is very straightforward. It could have been copied from 

Chapter 2 with few changes, but we actually have fewer dependencies in 

Chapter 3 than we did in Chapter 2.

Listing 3-2.  chapter03/pom.xml

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
         http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>com.apress</groupId>
        <artifactId>bsai-code</artifactId>
        <version>1.0</version>
    </parent>

    <artifactId>chapter03</artifactId>
    <version>1.0</version>

    <dependencies>
        <dependency>
            <groupId>org.springframework.ai</groupId>
            �<artifactId>spring-ai-openai-spring-boot-starter 

</artifactId>
        </dependency>

Chapter 3  Asking Questions and Using Data

https://doi.org/10.1007/979-8-8688-1291-0_2
https://doi.org/10.1007/979-8-8688-1291-0_3
https://doi.org/10.1007/979-8-8688-1291-0_2


61

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
            <exclusions>
                <exclusion>
                    �<groupId>com.vaadin.external.google 

</groupId>
                    <artifactId>android-json</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
    </dependencies>
</project>

Now for the more interesting stuff: our lights. Our basic light 

abstraction is very simple (and not very accurate, from a real-world light 

modeling perspective): we have lights, identified by color, that have a state 

of being “on” or “off.”

Note I n the real world, smart bulbs have a number of identifying 
characteristics: IP Addresses, MAC addresses, names, and perhaps 
zones. They also have more mutable characteristics, including 
color (most of the time!), brightness, and color temperature, and 
they also can provide metrics for their use. However, none of these 
attributes help us model calling functions from Spring AI, so we’re 
ignoring them.

Chapter 3  Asking Questions and Using Data



62

The Light class is a model—it’s a representation of a thing—so we’re 

going to put it in the ch03.model package, in chapter03/src/main/java/
ch03/model/Light.java. The code for it is very straightforward; it’s a 

classic Plain Old Java Object (not a record) because we’re going to mutate 

its state. Again, we’re aiming for simplicity here.5

Listing 3-3.  chapter03/src/main/java/ch03/model/Light.java

package ch03.model;

import java.util.StringJoiner;

public class Light {
    private String color;
    private Boolean on;

    public Light(String color, boolean on) {
        this.color = color;
        this.on = on;
    }

    // included for serialization later
    public Light() {
    }

    public String getColor() {
        return color;
    }

5 We toyed with the idea of making an unimpeachably correct representation, 
including the use of record and other such things. We decided against it, because 
we’re not trying to stun readers—or, well, attempt to stun readers—with how most 
excellent and FP-compliant our simple example code was. We just want it to work 
and be easy to understand.

Chapter 3  Asking Questions and Using Data



63

    public void setColor(String color) {
        this.color = color;
    }

    public boolean isOn() {
        return on;
    }

    public void setOn(boolean on) {
        this.on = on;
    }

    @Override
    public String toString() {
        return new StringJoiner(", ",
                Light.class.getSimpleName() + "[", "]")
                .add("color='" + color + "'")
                .add("on=" + on)
                .toString();
    }
}

The next thing we’ll need to do is create a LightService—in ch03.
service—that works with instances of our Light class. This is a Spring 

component, and the heart of its functionality is in the getLights() 

method, which queries the Spring ApplicationContext for any managed 

instances of Light.

In a real application, this class would have network services to track 

when lights became available or responded to network broadcast events, 

but the actual mechanics of that are far too complex for this example.

After we see the source for LightService, we’re going to create our 

Spring configuration, and then we’ll test all this stuff out so we know 

it works.

Chapter 3  Asking Questions and Using Data



64

Listing 3-4.  chapter03/src/main/java/ch03/service/

LightService.java

package ch03.service;

import ch03.model.Light;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.ApplicationContext;
import org.springframework.stereotype.Service;

import java.util.List;
import java.util.Optional;

@Service
public class LightService {
    �public final Logger logger = LoggerFactory.getLogger(this.

getClass());

    ApplicationContext context;

    public LightService(ApplicationContext context) {
        this.context = context;
    }

    public List<Light> getLights() {
        return context
                .getBeansOfType(Light.class)
                .values()
                .stream()
                .toList();
    }

    public Optional<Light> getLight(String color) {
        return getLights()
                .stream()

Chapter 3  Asking Questions and Using Data



65

                �.filter(light -> light.getColor().
equalsIgnoreCase(color))

                .findFirst();
    }

    �public Optional<Light> setLight(String color, boolean 
status) {

        var light = getLight(color);
        light.ifPresent(it -> {
            it.setOn(status);
        });
        return light;
    }
}

This service provides three methods: one is getLights(), which—as 

previously stated—gets all of the managed Light instances from Spring. 

The getBeansOfType() method returns a Map<String, Class<T>>—where 

the key is the name of the bean in the Spring context and the Class is the 

type passed in—and we don’t care about the name of the beans, so we 

convert it to a simple List.

The next method provided retrieves a Light by color. If the color isn’t 

found among the list of Light instances, an empty result is returned; this 

is a pattern largely inspired by the Spring Data Repository. We could have 

used nullable types instead, as Optional<T> references are nullable in and 

of themselves.6

6 Optional is useful in Java, but not very; however, in streams they can occasionally 
be quite useful. We’re not going to get anywhere near the tipping point where we 
see value from using Optional like that, but it’s good to follow a convention, and 
this is one.

Chapter 3  Asking Questions and Using Data



66

The last method provides a mechanism to change a light’s state. It 

assumes the state passed in is absolute; it won’t complain if you try to turn 

on a light that’s already on, for example; nor will it complain if you change 

a light that doesn’t exist. In this case, it simply returns an empty Optional 

just like getLight() does.

Like our Light class, the LightService isn’t particularly complex or 

interesting; we just need to have it to make everything else work, much as 

we need our next class, the Ch03Configuration class, which is our Spring 

configuration.

This class exists mostly to give us a place for the  

@SpringBootApplication annotation as well as instantiate our Light 

instances. Thus, it’s just as simple as Light and LightService:

Listing 3-5.  chapter03/src/main/java/ch03//

Ch03Configuration.java

package ch03;

import ch03.model.Light;
import org.springframework.boot.autoconfigure.SpringBootAp
plication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
public class Ch03Configuration {
    @Bean
    Light getYellowLight() {
        return new Light("yellow", false);
    }

    @Bean
    Light getRedLight() {
        return new Light("red", false);
    }

Chapter 3  Asking Questions and Using Data



67

    @Bean
    Light getGreenLight() {
        return new Light("green", false);
    }

    @Bean
    Light getBlueLight() {
        return new Light("blue", false);
    }
}

Note that there’s no correlation of light colors to bean names. We could 

have named the beans “more appropriately,” but again, in any kind of 

real-world analog, we’d not create light references in this manner; they’d 

be discovered, so this class is entirely used for building out our examples, 

which we’re quite aware haven’t even begun to touch Spring AI.

Spring AI integration is coming, we promise. We’re almost there: we 

just need a test to validate that our LightService and the configuration 

is doing what it’s supposed to, and that involves two more classes—one of 

which is a base class for our tests that provides common services.

Let’s look at our BaseLightTests class first; it’s a test class, so it goes 

in chapter03/src/test/java/ch03. It provides a common reference to a 

LightService (so our tests don’t have to include one), as well as methods 

to reset all available lights to being “off”—so we have a pristine test state 

every time—and assert that a light exists and has a given state, as well as a 

method to construct a map of lights to their status, which means it’s easier 

for us to test the state of all lights.

Chapter 3  Asking Questions and Using Data



68

Listing 3-6.  chapter03/src/test/java/ch03/BaseLightTests.java

package ch03;

import ch03.model.Light;
import ch03.service.LightService;
import org.junit.jupiter.api.BeforeEach;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;

import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertTrue;

@SpringBootTest
public abstract class BaseLightTests {
    �private final Logger logger = LoggerFactory.getLogger 

(this.getClass());
    @Autowired
    LightService lightService;

    @BeforeEach
    void turnAllLightsOff() {
        lightService
                .getLights()
                .forEach(light -> {
                    light.setOn(false);
                });
    }

Chapter 3  Asking Questions and Using Data



69

    final void assertState(String color, boolean on) {
        var light = lightService.getLight(color);
        �assertTrue(light.isPresent(), color + " light is 

present");
        assertEquals(on, light.get().isOn(), "light state");
    }

    �final Map<String, Boolean> mapToStatus(List<Light> 
response) {

        return response
                .stream()
                .collect(
                        �Collectors.toMap(Light::getColor, 

Light::isOn)
                );
    }
}

Now it’s finally time for us to round out our simple example of 

light services, with a test of the, well, LightService. This class extends 

BaseLightTests so it gets a reference to the LightService, and every test it 

has will start with all lights being set to off.

Listing 3-7.  chapter03/src/test/java/ch03/LightServiceTests.java

package ch03;

import ch03.service.LightService;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import static org.junit.jupiter.api.Assertions.*;

Chapter 3  Asking Questions and Using Data



70

@SpringBootTest
public class LightServiceTests extends BaseLightTests {
    @Autowired
    LightService lightService;

    @Test
    void testLights() {
        // we expect four lights in our configuration.
        �assertEquals(4, lightService.getLights().size(), "count 

of lights");
    }

    @Test
    void findLight() {
        // we need to be able to find a specific light.
        �assertTrue(lightService.getLight("yellow").

isPresent());
    }

    @Test
    void failToFindMissingLight() {
        �// we need to be able to make sure a light 

doesn't exist.
        assertTrue(lightService.getLight("purple").isEmpty());
    }

    @Test
    void changeLight() {
        assertState("yellow", false);
        // set the light on
        lightService.setLight("yellow", true);
        assertState("yellow", true);

Chapter 3  Asking Questions and Using Data



71

        // turn it back off, restoring original state
        lightService.setLight("yellow", false);
        assertState("yellow", false);
    }
}

The code here is remarkably simple, as is the rest of our code: we 

know what our configuration should be (four lights, and “purple” should 

not be among them), and we simply run through all of our LightService 

methods to make sure they return values we expect.

We’re not really being exhaustive here, but we’re being exhaustive 

enough for our example code. If this test passes completely, we have quite 

a bit of confidence that our LightService is functional in the ways we 

expect it to be.

It’s finally time for us to look at using this from Spring AI.

�Providing Access to Your Data
The core concept here is that we’re providing a way for the AI to do two 

things: determine when we’re referring to something our code controls 

and providing access to whatever it is.

If the data is static, we could always provide it to the AI as part of the 

request. For example, if we wanted a summary of a web page, we might 

fetch the web page’s content (with JSoup7 or something like it) and provide 

that as part of the request.

7 JSoup (https://jsoup.org/) is a Java library that makes extraction of data from 
HTML or XML very trivial: many HTML and XML documents are poorly formed, 
and JSoup is quite permissive in how it parses.

Chapter 3  Asking Questions and Using Data

https://jsoup.org/


72

Listing 3-8.  An example AI request for content summary

I have a web page with the following content, for which
I'd like a summary and any interesting observations about 
the author:

```
This is My About Page

My name is Lorem Ipsum. I like hamsters and most other small 
mammals, like squirrels and rabbits. I'm pretty indiscriminate
in which mammals I like; rodents, lagomorphs, procyonids, 
they're all wonderful
creatures.

I like gnawing on tree stumps, too. I may have had a didelphoid 
in my family tree at some point.
```

Note  You should feel free to use this as a prompt for any GPT you 
prefer; it’s not likely to tell you much you didn’t already know, though. 
To really get anything out of it, you’d want a much larger body 
of input.

This approach works if you know what information you intend to 

provide to the language model. In this case, you’re focusing its attention 

specifically on the plain-text content of a web page (presumably; we 

made that content up as we wrote), so there’s no need for “live access” to 

the data.

You could also provide a table of information, corresponding to the 

lights we’ve set up in our Spring configuration in Listing 3-5.

Chapter 3  Asking Questions and Using Data



73

Listing 3-9.  An example AI request for finding the status of a light

Here's a CSV representation of a set of light bulbs.
Can you tell me the status of the lights named 'yellow' and 
'purple'?

```
name,state
yellow,on
red,off
blue,off
green,off
```

This should result in the AI telling us that the light named yellow is 

“on” and that the state of the light named purple cannot be determined, as 

we didn’t provide its data.

The issues with doing this are twofold: one issue is that the light data 

isn’t “live”—what if someone changes the light after issuing the request?

Another issue is that we’re providing far more data than our request 

actually needs. We only need to provide the data for the light named 

yellow, since that’s the only existing light we have in our query, and the 

other lights are simply consuming tokens for the AI to parse. Token parsing 

isn’t expensive, really, but imagine we were querying the lights for, say, a 

hospital, which might have thousands of such lights—parsing all of that 

data adds up to real money and time.

Let’s do better.

�Building the Callable for Spring AI
To provide functionality to Spring AI, we use a named service that has 

a description to help the AI determine whether the service can provide 

data or not. That service is an implementation of a java.util.function.
Function<T,R>, that accepts a data element as a request and returns a 

Chapter 3  Asking Questions and Using Data



74

response. When we build our prompt, we will provide the name of our 

service as part of the prompt, and in general the LLMs do a good job of 

determining when and how to call the function.

Let’s take a look at how this is done, first by replicating our query of 

the status of lights named yellow and purple. This won’t compile until 

we have a few other classes written, but we’re going to get to them in very 

short order.

Here’s RequestLightStatusTest.java, which uses a service to talk 

to the AI. Again, we haven’t written that service yet, but it’s coming up 

very soon.

Listing 3-10.  chapter03/src/test/java/ch03/

RequestLightStatusTest.java

package ch03;

import ch03.service.RequestChatService;
import org.junit.jupiter.api.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import java.util.List;

import static org.junit.jupiter.api.Assertions.assertTrue;

@SpringBootTest
public class RequestLightStatusTest extends BaseLightTests {
    Logger logger= LoggerFactory.getLogger(this.getClass());
    @Autowired
    RequestChatService lightQueryService;

    @Test

Chapter 3  Asking Questions and Using Data



75

    void queryLightStatus() {
        var response = lightQueryService.converse(List.of(
                �new UserMessage("Can you tell me the status of 

the lights named 'yellow' and 'purple'?")
        ));

        �var content=response.getFirst().getOutput().
getContent();

        logger.info("Response: {}", content);
        assertTrue(content.contains("off"));
    }
}

This test is, honestly, not very good: it replicates our query well 

enough, but the output is not tested very well.8

The test fails if the response doesn’t contain the word “off”—which 

we expect it will, because that’s the default state of the yellow light—but 

doesn’t have a good way to validate that the purple light isn’t present. 

Once we have the other classes required for this test built, we’ll be able to 

see what the query responds with and validate it that way—and there are 

ways to do it programmatically, but we haven’t covered those yet. We’re 

getting there.

What we need next is a RequestChatService. It’s going to look an awful 

lot like our ConversationChatService from Chapter 2, in Listing 2-16, but 

it’s going to introduce a method to build our OpenAiChatOptions object 

that we’ll use explicitly in calling the AI, buildOptions().

8 The difficulty of testing textual responses is going to come up later in this chapter 
and will also be addressed in Chapter 6.

Chapter 3  Asking Questions and Using Data

https://doi.org/10.1007/979-8-8688-1291-0_2
https://doi.org/10.1007/979-8-8688-1291-0_6


76

This OpenAiChatOptions object will include a reference to a named 

service, RequestLightStatusFunction, that we’ll see next—this is the 

named function that allows a light’s status to be queried.

Listing 3-11.  chapter03/src/main/java/ch03/service/

RequestChatService.java

package ch03.service;

import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.messages.Message;
import org.springframework.ai.chat.model.Generation;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.openai.OpenAiChatOptions;
import org.springframework.context.annotation.Primary;
import org.springframework.stereotype.Service;

import java.util.List;

@Primary
@Service
public class RequestChatService {
    protected final ChatClient client;

    RequestChatService(ChatClient.Builder builder) {
        client = builder.build();
    }

    public OpenAiChatOptions buildOptions() {
        return new OpenAiChatOptions
                .Builder()
                .withFunction("RequestLightStatusService")
                .build();
    }

Chapter 3  Asking Questions and Using Data



77

    public List<Generation> converse(
            List<Message> messages
    ) {
        var prompt = new Prompt(messages, buildOptions());
        return client
                .prompt(prompt)
                .call()
                .chatResponse()
                .getResults();
    }
}

This is fairly straightforward, but note the use of @Primary for the class. 

This is because we’re going to extend this class with an UpdateChatService 

(Listing 3-14), and since Spring will look for any Spring bean that can be 

assigned to a reference, we need to tell it that if there’s a choice, use this 

class and not any other matching class. Ordinarily, you wouldn’t need to 

worry about this sort of thing.

With that said, we have finally gotten to the point where we can write 

our function.

It’s important to note that this is a Component—declared with  

@Component here, so Spring knows to manage it. It could be a @Bean in our 

configuration, or a @Service—it’s not really a service, despite the name, 

but as it operates on data and uses another service, it seemed appropriate 

enough as a name.9

9 Readers should definitely feel free to use their own conventions. The power of 
conventions is not that you use ours—it’s that whatever convention you use works 
for you.

Chapter 3  Asking Questions and Using Data



78

The next important thing about the declaration, before we get to the 

code itself, is the use of a description, done here with the @Description 

annotation. This provides information to the AI about what the function 

does and should be written to provide hints; here, get light status 

provides enough information.

Note  Writing the descriptions might be the most challenging aspect 
of writing functions for Spring AI. Directness and clarity seem to be 
the most consistent approaches; you may have to try a few options 
in your own functions, testing along the way, to get them tuned well. 
Oddly enough, this advice applies to generalized queries to an LLM, 
too. There’s no replacement for experience.

We need three pieces here: our input structure, our output structure, 

and the function that maps our input to the output.10

We can put all three in the same source file and scope the inputs and 

outputs to our component, as record types; our class is a Spring bean, so it 

has access to all of the wiring that the Spring context provides. In our case, 

we’re having Spring provide a reference to a LightService, from Listing 3-4.

Listing 3-12.  chapter03/src/main/java/ch03/service/RequestLightS

tatusFunction.java

package ch03.service;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

10 Interestingly enough, that’s one of the definitions of a function in mathematics: 
a function literally maps an input to an output, deterministically. This is also the 
heart of “Functional Programming,” and a core aspect of how streams work, and 
we’ve now wandered far away from the point of this book.

Chapter 3  Asking Questions and Using Data



79

import org.springframework.context.annotation.Description;
import org.springframework.stereotype.Service;

import java.util.function.Function;

@Service("RequestLightStatusService")
@Description("Get light status")
public class RequestLightStatusFunction
        �implements Function<RequestLightStatusFunction.Request, 

RequestLightStatusFunction.Response> {
    �public final Logger logger = LoggerFactory.getLogger(this.

getClass());
    LightService lightService;

    �public RequestLightStatusFunction(LightService 
lightService) {

        this.lightService = lightService;
    }

    public record Request(String color) {
    }

    public record Response(String color, boolean on) {
    }

    public Response apply(Request request) {
        �logger.info("Requesting status for light: {}", 

request);
        var light = lightService.getLight(request.color);
        return light
                �.map(value -> new Response(request.color, 

value.isOn()))
                .orElse(null);
    }
}

Chapter 3  Asking Questions and Using Data



80

Our class has single attribute, the LightService, that provides access 

to our lights “live.” We provide this via constructor injection, although we 

could just as easily have used autowiring.

Next, we have a RequestLightStatusService.Request record—which 

has a single field, a light’s name. This is what the AI should provide to our 

function as an input.

After that, we have a RequestLightStatusService.Response—which 

binds the light’s color to its status. This is what we provide to the AI as 

output from our function call.

Lastly, we have the actual mapping function, the apply() method. This 

looks up the light from the LightService and maps the Optional<Light> 

into either a valid RequestLightStatusService.Response object (if it 

exists) or null if not.

Note A s usual, we have a lot of options for how to map the 
response, given an input. This is one of a few sensible possibilities. 
It’s also the one that occurred to your author first, and by gum, it 
worked well enough. After all, it’s just taking an input and generating 
an output for it.

Now we have enough code that we can run our RequestLightStatusTest 

and see its output. Here’s example output from our machines for this test:

INFO  ch03.service.RequestLightStatusFunction --
Requesting status for light: Request[color=yellow]
INFO  ch03.service.RequestLightStatusFunction --
Requesting status for light: Request[color=purple]
INFO  ch03.RequestLightStatusTest --
Response: The status of the light named 'yellow' is off.
Unfortunately, I couldn't retrieve the status of the light 
named 'purple'.

Chapter 3  Asking Questions and Using Data



81

Because this is generated with an LLM, the output can vary from call 

to call, but your output should map pretty closely to what this example 

shows. Assuming everything has gone well, you can see that the system 

reported the yellow light correctly—it’s off, by default, after all—and you 

can see from the logging output that the function was called twice, once for 

the yellow light and once for the purple light.

It’s time to write another function, one that changes a light’s status, and 

then we can look at perhaps some better ways than plain text to get data 

out of the AI.

�Changing a Light
The pattern for writing a mutation operation isn’t any different from the 

pattern for writing an access. We have an input format—a request—and 

a response of some sort, and a mapping function to go from one to the 

other. In this case, we have input that should add the desired light’s state 

in addition to the light’s name, and the response…​ well, the response 

can be anything, but it probably makes sense to return the new light’s 

information.

So in essence, our UpdateLightStatusFunction is going to be just 

like our RequestLightStatusFunction, with a mutation of the light and a 

Request that includes the desired light’s state. Let’s see what it looks like.

Listing 3-13.  chapter03/src/main/java/ch03/service/

UpdateLightStatusFunction.java

package ch03.service;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.Description;
import org.springframework.stereotype.Service;

import java.util.function.Function;

Chapter 3  Asking Questions and Using Data



82

@Service("ChangeLightStatusService")
@Description("Change a light's state")
public class UpdateLightStatusFunction
        �implements Function<UpdateLightStatusFunction.Request, 

UpdateLightStatusFunction.Response> {
    �public final Logger logger = LoggerFactory.getLogger(this.

getClass());
    LightService lightService;

    �public UpdateLightStatusFunction(LightService 
lightService) {

        this.lightService = lightService;
    }

    public record Request(String color, boolean on) {
    }

    public record Response(String color, boolean on) {
    }

    public Response apply(Request request) {
        logger.info("Changing status for light: {}", request);
        �var light=lightService.setLight(request.color, 

request.on);
        return light
                �.map(value -> new Response(request.color, 

value.isOn()))
                .orElse(null);
    }
}

It’s so similar to RequestLightStatusFunction that one could 

conceive of writing a class hierarchy to build the functionality—you’d use 

a generic type for the Request and have localized functionality to apply 

Chapter 3  Asking Questions and Using Data



83

the request (i.e., a do-nothing operation for RequestLightStatusFunction 

and a mutation operation for UpdateLightStatusFunction). It’d be trivial 

to write, really, but wouldn’t really accomplish anything for our purposes 

here, besides creating a few more listings. In the end, it’d probably end up 

with more lines of code, by a few, thanks to Java being slightly verbose.11

However, now we have to build another test—and another service—

to show the functionality. It’s going to look very similar to our previous 

example, but that’s all right; authors get paid by the word.12

In our previous example, we wrote the test first, then the service the 

test used, and then the function—here, we’ve already seen the function, so 

let’s continue inverting the process and take a look at the service that uses 

the function.

Here, though, we’re going to use inheritance, because the only 

difference between RequestChatService and UpdateChatService is 

the provision of the UpdateLightStatusFunction function to the chat 

options.13

11 If we put the functions in our Spring Configuration as @Bean instances rather 
than in separate source files, we could probably save a few lines here and there, 
but then it’d get a lot harder to explain in this chapter.
12 We actually don’t get paid by the word, or by the page. In the days of pulp fiction, 
in the 1950s, authors were paid by the word, which is why so much pulp fiction 
used purple prose—authors wrote out everything they could, so they would get 
paid more by the publisher. Speaking personally, your author here thinks that’s a 
great idea; can we go back to that, Publisher?
13 This is why Listing 3-11 used @Primary, because otherwise any reference to 
RequestChatService would be able to be fulfilled by either RequestChatService 
or UpdateChatService, and we wanted to tell Spring to prefer 
RequestChatService where possible; if we need an UpdateChatService, we’d use 
that reference type instead.

Chapter 3  Asking Questions and Using Data



84

Listing 3-14.  chapter03/src/main/java/ch03/service/

UpdateChatService.java

package ch03.service;

import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.openai.OpenAiChatOptions;
import org.springframework.stereotype.Service;

@Service
public class UpdateChatService extends RequestChatService {
    public UpdateChatService(ChatClient.Builder builder) {
        super(builder);
    }

    @Override
    public OpenAiChatOptions buildOptions() {
        return new OpenAiChatOptions
                .Builder()
                .withFunction("RequestLightStatusService")
                .withFunction("ChangeLightStatusService")
                .build();
    }
}

And now it’s time to take a look at a query that actually changes the 

lights’ status. It’s going to look much like the RequestLightStatusTest but 

will actually verify the lights’ status after showing the response from the AI.  

Here, we actually have a better way of validating that our mutation was 

performed; this is a better test than RequestLightStatusTest was.

Chapter 3  Asking Questions and Using Data



85

Listing 3-15.  chapter03/src/test/java/ch03/ 

UpdateLightStatusTest.java

package ch03;

import ch03.service.UpdateChatService;
import org.junit.jupiter.api.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import java.util.List;

@SpringBootTest
public class UpdateLightStatusTest extends BaseLightTests {
    �private final Logger logger = LoggerFactory.getLogger(this.

getClass());
    @Autowired
    UpdateChatService lightConversationService;

    @Test
    void changeLightStatus() {
        �var response = lightConversationService.converse 

(List.of(
                new UserMessage("Turn the yellow light on. " +
                        "Then show the state of the red," +
                        �" green, blue, purple, and yellow 

lights.")
        ));
        logger.info("Response from service: {}",
                response.getFirst().getOutput().getContent());

Chapter 3  Asking Questions and Using Data



86

        assertState("yellow", true);
        assertState("red", false);
    }
}

Our tests will pass (which means the function worked), but the test also 

generates the following output as an example:

INFO  ch03.service.UpdateLightStatusFunction --
Changing status for light: Request[color=yellow, on=true]
INFO  ch03.service.RequestLightStatusFunction --
Requesting status for light: Request[color=red]
INFO  ch03.service.RequestLightStatusFunction --
Requesting status for light: Request[color=green]
INFO  ch03.service.RequestLightStatusFunction --
Requesting status for light: Request[color=blue]
INFO  ch03.service.RequestLightStatusFunction --
Requesting status for light: Request[color=purple]
INFO  ch03.service.RequestLightStatusFunction --
Requesting status for light: Request[color=yellow]
INFO  ch03.UpdateLightStatusTest --
Response from service: The yellow light is now turned on.

Here are the states of the lights:
- Red light: Off
- Green light: Off
- Blue light: Off
- Purple light: Not available
- Yellow light: On

You can see the flow: first, it determined that it needed to mutate the 

yellow light, so called UpdateLightStatusFunction with yellow and true 

to turn the light “on”—and then it iterated through the lights we specified 

Chapter 3  Asking Questions and Using Data



87

(“red,” “green,” “blue,” “purple,” and “yellow”) to query their state, and it 

informed us that purple wasn’t available, as the function to get the light 

returned null.

�Structured Output
Our last test did a good job of verifying that the lights were actually 

changed, by using a single service (the LightService) to do everything, 

including applying changes from the AI. It’s worth noting, though, that 

we can get the AI to give us actual data structures, so we can blend 

information from our data as well as information from the AI.

One way to do this is to instruct the AI to literally return formatted 

data: you might issue a query such as provide the status of the 
lights in JSON format, with no commentary and no explanation., 

as a short example. Then we could take the response and pipe it through a 

JSON parser like Jackson14 and access the resulting data structures.

That’s…​ one way to do it. We can actually instruct Spring AI to do 

the work for us, though. Let’s build a test that does the same thing as 

UpdateLightStatusTest, except that it returns a list of lights—and adds 

the CIE 1931 color coordinate of the light, inferred from its state and name.

CIE 1931 is a mathematical model that “define the relationship 

between the visible spectrum and the visual sensation of specific colors by 

human color vision.”15 It represents the colors we can see with an “x”, “y”, 

and “z” coordinate—where “z” is often shown as “Y”, but that’s confusing 

14 Jackson is the library that provides the default JSON parser in Spring Boot.
15 CIE 1931: https://en.wikipedia.org/wiki/CIE_1931_color_space, captured 
on September 27, 2024.

Chapter 3  Asking Questions and Using Data

https://en.wikipedia.org/wiki/CIE_1931_color_space


88

in a book where users might not be familiar with the systems in question—

and it’s very common in APIs that work with smart lights, although it’s not 

very common for users to work with the coordinate system directly. It was 

formalized in 1931, if you can imagine that from its name.

There are multiple ways to map data from Spring AI into an object 

model, but the easiest way is to simply construct the OpenAiChatOptions 

such that we use the entity() method, with a type reference that Jackson 

can recognize. We can even embed the data structures in our service, 

although it makes referencing them a little more verbose in calling code 

(as we’ll see in our test).

Let’s take a look, though. The service looks quite similar to our other 

Spring AI services, but it has some important differences.

Listing 3-16.  chapter03/src/main/java/ch03/service/

UpdateStructuredChatService.java

package ch03.service;

import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.messages.Message;
import org.springframework.ai.chat.messages.SystemMessage;
import org.springframework.ai.openai.OpenAiChatOptions;
import org.springframework.stereotype.Service;

import java.util.ArrayList;
import java.util.List;

@Service
public class UpdateStructuredChatService {
    private final ChatClient client;

    �public record LightWithXYZ(String color, boolean on,  
Double x, Double y, Double z) {

    }

Chapter 3  Asking Questions and Using Data



89

    public record LightWithXYZList(List<LightWithXYZ> lights) {
    }

    �public UpdateStructuredChatService(ChatClient.Builder 
builder) {

        client = builder.build();
    }

    public OpenAiChatOptions buildOptions() {
        return new OpenAiChatOptions
                .Builder()
                .withFunction("RequestLightStatusService")
                .withFunction("ChangeLightStatusService")
                .build();
    }

    public LightWithXYZList converse(List<Message> messages) {
        var localMessages = new ArrayList<Message>(messages);
        localMessages.addFirst(new SystemMessage(
                �"Add the CIE 1931 color representation of each 

light if possible."));
        return client
                .prompt()
                .messages(localMessages)
                .options(buildOptions())
                .call()
                .entity(LightWithXYZList.class);
    }
}

Chapter 3  Asking Questions and Using Data



90

The first differences are the use of the LightWithXYZ and 

LightWithXYZList records. The LightWithXYZ is basically a copy of our 

Light with added CIE 1931 information. The LightWithXYZList is simply 

a way to specify a list of the lights trivially (to avoid building more complex 

type references and whatnot).

Our buildOptions() is exactly the same as our other options methods, 

providing mutation and access to our lights to the AI.

Our converse() method does some extra things, though.

First, it uses a system message to instruct the AI with additional 

context, outside of whatever prompt the user supplies. In this case, 

we’re telling the system to add the CIE 1931 representation of the lights, 

if possible (derived from their names and presence, so if the light’s not 

found, we won’t get any CIE 1931 information from it).

Secondly—and here’s where the actual work of specifying structured 

data comes in—it uses .entity(LightWithXYZList.class) as the last 

part of the Spring AI request. This is all we need to do to ask the AI to try to 

coerce the output into a Java data structure that we can use.

There are other ways to specify mappings, if we have a more complex 

interaction, but this is the beginning of all of it, and even those other 

interactions are essentially doing something very similar.

Of course, now that we’ve talked about it, we should show it working, 

with a test. Here’s UpdateLightStructuredTest.

Listing 3-17.  chapter03/src/test/java/ch03/

UpdateLightStructuredTest.java

package ch03;

import ch03.service.UpdateStructuredChatService;
import org.junit.jupiter.api.Test;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.beans.factory.annotation.Autowired;

Chapter 3  Asking Questions and Using Data



91

import org.springframework.boot.test.context.SpringBootTest;

import java.util.List;

import static org.junit.jupiter.api.Assertions.*;

@SpringBootTest
public class UpdateLightStructuredTest extends BaseLightTests {
    @Autowired
    UpdateStructuredChatService service;

    UpdateStructuredChatService.LightWithXYZ find(
            String color,
            �List<UpdateStructuredChatService.LightWithXYZ>  

lights
    ) {
        return lights
                .stream()
                .filter(i -> i.color().equalsIgnoreCase(color))
                .findFirst()
                .orElseThrow();
    }

    @Test
    void changeLightStatus() {
        // we use the actual types here for clarity only.
        // var would have worked fine.
        UpdateStructuredChatService.LightWithXYZList response =
                service.converse(List.of(
                        �new UserMessage("Turn the yellow 

light on. " +
                                "Then show the state of the " +
                                �"red, green, blue, purple, and 

yellow lights.")
                ));

Chapter 3  Asking Questions and Using Data



92

        UpdateStructuredChatService.LightWithXYZ yellow =
                find("yellow", response.lights());
        assertTrue(yellow.on());
        assertEquals(0.4447, yellow.x(), 0.01);
        assertEquals(0.5153, yellow.y(), 0.01);
        assertEquals(0.04, yellow.z(), 0.01);

        UpdateStructuredChatService.LightWithXYZ purple =
                find("purple", response.lights());
        assertNull(purple.x());
        assertNull(purple.y());
        assertNull(purple.z());
    }
}

We have much the same structure as our other tests, and our query is 

the same. We have a method to get a specific light from our data structure 

(because it’s returned as an ArrayList), but our test takes the data 

structure, finds both yellow and purple, and validates their state and that 

their CIE colors are roughly correct.

You’ll note the use of actual data types in the test method, like 

UpdateLightStructuredTest.LightWithXYZList. This is entirely 

intentional and is purely to make the data types obvious to the reader. 

There’s absolutely no need to use the data type’s names if you don’t want 

to; var yellow would have worked just as well.16

16 When this chapter was being written, var yellow was actually the declaration 
used, for example. With that said, we felt we wanted to make the types more 
obvious, since they were being pulled from a service and exposed to client 
code, where our other embedded types were limited to their use in internal 
communications.

Chapter 3  Asking Questions and Using Data



93

�Applying This in Your Code
It’s fun to see how an artificial set of lights can be queried and updated 

through the use of Spring AI, but that’s not very practical, unless you’re 

working with lights. In practice, though, you could imagine providing 

access to customer orders, or shipping status, or insurance policy 

conditions and states, or anything else: an automobile repair shop might 

have a way to track work orders such that a customer can ask an AI how 

things are going, rather than interrupting a human.

Human interaction is important in a lot of ways, and shouldn’t be 

prevented—you wouldn’t want to force a customer to talk to an AI rather 

than a human—but simple interactions can go much more smoothly with 

an AI, if they can be fulfilled by an AI. Imagine calling an expensive and 

talented mechanic away from working on a complex piece of machinery, 

only to ask “Is it done yet?”—when an AI could look at the status of the 

work order instead and reply with “No, but it’s being worked on right now!” 

That’s a win for everyone: the customer, because they can get an answer 

immediately, and the shop, because the mechanic doesn’t have to get 

interrupted for a simple question.

�Next Steps
In this chapter, we’ve seen how to provide two-way interaction between 

Spring AI and our code, such that the AI isn’t limited to what data exists in 

its training set only, and it can use our functions to change things in our 

application. We’ve gone from a simple “fortune-teller” model, where we 

ask questions and the AI passively responds, to a model in which we can 

let the AI change the world around us.

Chapter 3  Asking Questions and Using Data



94

It wouldn’t be a stretch to imagine how these functions could return 

order information, or modify orders, or create tickets, or any other system 

interaction our applications needed; this is how many OpenAI-driven 

chatbots work, after all.

We’ve also seen some of how we can get the AI to present data in a 

fashion that our programs can easily interpret and apply.

In our next chapter, we’re going to jump from the realm of working 

with text, into working with audio, both interpreting audio files and 

generating them.

Chapter 3  Asking Questions and Using Data



95© Andrew Lombardi and Joseph Ottinger 2025 
A. Lombardi and J. Ottinger, Beginning Spring AI, Apress Pocket Guides,  
https://doi.org/10.1007/979-8-8688-1291-0_4

CHAPTER 4

Working with Audio

�Generating and Processing Audio
Since the early 19th century, humans have expressed the idea of a 

mechanical device capable of speech in fiction, through authors like 

Jules Verne and later H.G. Wells. By the mid-20th century in fiction, we 

had moved from “Ulla, Ulla” to machines that were capable of talking 

back (text to speech) and understanding speech (transcription). Today, 

we are surrounded by mechanical devices that have made the vision of 

Roddenberry and others come to life whether prefaced with “Computer,” 

“Siri,” or “Alexa” the result is a device that understands the basics of what 

you ask it like requests for weather or a piece of music.

Today, we can reasonably speak something as futuristic as “Computer, 

write me a chapter on using Spring AI to generate and process audio,” and 

what would be returned might just be a good first start.1 Since we’re still 

actually writing the text here, let’s turn our attention toward what we can 

achieve using AI with the spoken word. One can imagine transcribing 

video or audio to written text as part of a service offering. Written text can 

be spoken aloud using this module for the vision-impaired and for those 

engaged in activities where reading isn’t an option or as a response to 

commands in a system like Siri.

1 As we mentioned in Chapter 1, unless we mention it, the text of this book was 
written by one of the human authors.

https://doi.org/10.1007/979-8-8688-1291-0_4#DOI
https://doi.org/10.1007/979-8-8688-1291-0_1


96

Spring AI has two avenues for working with audio. The first is 

transcribing text from a supplied audio file, and the second is generating 

an audio file with natural sounding speech. In both instances, the 

integration done today with Spring AI uses OpenAI. Hopefully in the 

near future, we’ll see integrations with other providers like Elevenlabs or 

Google’s Gemini.

In this chapter, we will walk through the two simple APIs for processing 

audio and text and real-world examples of how you can use both.

Let’s dive in.

�The AI Spoken Word
Text-to-speech technology has a long history, dating back to the 1960s 

when Bell Labs used an IBM 7094 computer to synthesize speech for 

“Daisy Bell,” even influencing Arthur C. Clarke’s depiction of HAL9000 in 

2001: A Space Odyssey.

Text-to-speech synthesis is a fascinating programming challenge 

because it demands bridging the gap between abstract language and 

human perception. The models must grapple with not just grammar, but 

also the nuances of pronunciation, intonation, and rhythm that make 

speech sound natural.

This shift toward AI-powered solutions brings a host of benefits. 

Programmers now have access to a wider range of voices, more natural- 

sounding speech, and simpler integration processes. Service providers 

handle the heavy lifting, freeing developers to focus on creative 

applications and pushing the boundaries of flexible models.

The first task we’ll take on is to create our directory structure for this 

chapter. This can be created in the “project directory” as in previous 

chapters with the following command, if you’re running a POSIX shell like 

bash or zsh.

Chapter 4  Working with Audio



97

Listing 4-1.  Creating the project directory structure in POSIX

mkdir -p src/{main,test}/{java,resources}

This is this chapter’s project file, and thus it’s in a directory under the 

top-level directory, called chapter04, and the file is named pom.xml.

Listing 4-2.  chapter04/pom.xml

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
         http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>com.apress</groupId>
        <artifactId>bsai-code</artifactId>
        <version>1.0</version>
    </parent>

    <artifactId>chapter04</artifactId>
    <version>1.0</version>

    <properties>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.springframework.ai</groupId>
            �<artifactId>spring-ai-openai-spring-boot-starter 

</artifactId>
        </dependency>

Chapter 4  Working with Audio



98

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
            <exclusions>
                <exclusion>
                    �<groupId>com.vaadin.external.google 

</groupId>
                    <artifactId>android-json</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                �<artifactId>spring-boot-maven-plugin 

</artifactId>
                <configuration>
                    <skip>false</skip>
                </configuration>
                <executions>
                    <execution>
                        <goals>
                            <goal>repackage</goal>
                        </goals>

Chapter 4  Working with Audio



99

                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

The first thing we need to handle as we did in previous chapters is the 

application configuration. Thanks to the magic of the library spring-ai- 
spring-boot-autoconfigure which has the code for auto configuration, 

it will pick up the configuration for working with audio in your application 

configuration. We need to make sure we’ve provided a value to  

spring.ai.openai.api-key.

Listing 4-3.  chapter04/src/main/java/ch04/Ch04Configuration.java

package ch04;

import org.springframework.ai.chat.client.ChatClient;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootAp
plication;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Description;

@SpringBootApplication
public class Ch04Configuration {

    public static void main(String[] args) {
        SpringApplication.run(Ch04Configuration.class, args);
    }
}

Chapter 4  Working with Audio



100

An OpenAiAudioApi has three main request modules that it enables for 

working with audio. The first we’ll work with is the SpeechRequest which 

may just be the text we want to create an audio file but can also accept 

several other options which we’ll go over below. As with other modules 

in Spring AI, they can be controlled at the point of the request, in code, or 

from the application properties.

Property name Description

spring.ai.openai.api-key The API key to be used by the application. This 

isn’t utilized by OpenAiAudioApi, but we’ll 

continue with this convention here.

spring.ai.openai.audio.
speech.options.model

The name of the model to use. tts-1 and 

tts-1-hd are both available.

spring.ai.openai.audio.
speech.options.voice

The voice to use for the TTS output. Available 

options are alloy, echo, fable, onyx, 

nova, and shimmer.

spring.ai.openai.audio.
speech.options.response-
format

The format of the audio output, supported 

formats are mp3, opus, aac, flac, wav, and 

pcm.

spring.ai.openai.audio.
speech.options.speed

The speed of the voice synthesis between 0.0 

and 1.0.

For this chapter, we’re going to focus on tests, but also we will have an 

opportunity to explore a real-world case where we can use the Spring AI 

Audio API with Spring MVC.

We need to at least provide the API key to our chapter’s code, and 

we want the model to be as deterministic as possible for now, so here’s 

our application.properties. This is all very test-centric, so we’re 

Chapter 4  Working with Audio



101

going to place it in chapter02/src/test/resources. Note the use of 

spring.config.import, which allows us to load our .env file’s values for 

internal use.

Listing 4-4.  chapter04/src/test/resources/application.properties

spring.config.import=file:../.env[.properties]

spring.ai.openai.api-key=${OPENAI_API_KEY}

Our first test case is going to be based on the Daisy Bell song2 that we 

referenced at the beginning of the chapter. Our test is simple; we’re going 

to pass the lyrics to the song “Daisy Bell” to service TextToSpeechService 

and call the processText method. We’ll take the response and assert that 

it is non-null as the actual response would be tough to verify in a test. 

(However, as we’ll demonstrate, we can save it to local storage, where you 

can play it yourself and hear whether the AI actually fulfilled our request.)

Listing 4-5.  chapter04/src/test/java/ch04/SpeechTTSTest.java

package ch04;

import ch04.service.TextToSpeechService;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import static org.junit.jupiter.api.Assertions.assertNotNull;

@SpringBootTest(webEnvironment = SpringBootTest.
WebEnvironment.MOCK)
public class SpeechTTSTest {

2 As mentioned in the rather informative article, “The IBM 7094 is the First 
Computer to Sing,” at https://www.historyofinformation.com/detail.
php?entryid=4445—well worth reading.

Chapter 4  Working with Audio

https://www.historyofinformation.com/detail.php?entryid=4445
https://www.historyofinformation.com/detail.php?entryid=4445


102

    @Autowired
    TextToSpeechService textToSpeechService;

    @Test
    void runTTSQuery() {
        �var responseAsBytes = textToSpeechService.

processText("""
 Daisy, Daisy,
 Give me your answer, do!
 I'm half crazy,
 All for the love of you!
 It won't be a stylish marriage,
 I can't afford a carriage,
 But you'll look sweet upon the seat
 Of a bicycle built for two!
""", null);

        assertNotNull(responseAsBytes);
    }

}

If you are interested in the output as part of the test, you could write 

the mp3 to disk.

Listing 4-6.  Write MP3 to disk

Files.write(Paths.get("./daisybell.mp3"), responseAsBytes);

This test is simple enough, but it obviously won’t run because 

we don’t have an implementation of the TextToSpeechService yet. 

The service has a single public method in it, processText(String, 
OpenAiAudioSpeechOptions.Builder), which returns a byte[].

We have a SpeechModel available which we’ll use Spring’s dependency 

injection to reference in our TextToSpeechService.

Chapter 4  Working with Audio



103

Issuing a call to OpenAI, we build a SpeechPrompt and pass the text 

we’d like to use to generate spoken word output. If we don’t pass an 

OpenAiAudioSpeechOptions object into the processText method, it will by 

default use the options from application.properties if they’re specified.

Once we have a prompt, we issue a call to the API, whether blocking or 

streaming; in this case, we don’t care about streaming, so we use call() to 

get the response specification.

Once we have the response specification, we can get the recording by 

using the getResult().getOutput() method which returns a byte array. 

If we wanted to, we could get metadata about the call like the number of 

tokens consumed on our API key and a few other interesting elements.

This sounds pretty straightforward, so let’s see what the actual Java 

class looks like.

Listing 4-7.  chapter04/src/main/java/ch04/

service/TextToSpeechService.java

package ch04.service;

import org.springframework.ai.openai.OpenAiAudioSpeechModel;
import org.springframework.ai.openai.OpenAiAudioSpeechOptions;
import org.springframework.ai.openai.audio.speech.SpeechPrompt;
import org.springframework.ai.openai.audio.speech.Speech 
Response;
import org.springframework.stereotype.Service;

@Service
public class TextToSpeechService {

    private final OpenAiAudioSpeechModel speechModel;

    �public TextToSpeechService(OpenAiAudioSpeechModel 
speechModel) {

        this.speechModel = speechModel;
    }

Chapter 4  Working with Audio



104

    �public byte[] processText(String text, 
OpenAiAudioSpeechOptions.Builder speechOptions) {

        �var speechPrompt = speechOptions != null ? new 
SpeechPrompt(text, speechOptions.build()) : new 
SpeechPrompt(text);

        �SpeechResponse response = speechModel.call 
(speechPrompt);

        return response.getResult().getOutput();
    }
}

We’ve got something to test now, so we can run this chapter’s test suite 

by using Maven:

mvn -am -pl chapter04 clean test

If everything is working properly, it should complete with 

SUCCESS. We’ve included what you should see in your output after running 

this command below.

[INFO] -------------------------------------------------------
[INFO]  T E S T S
[INFO] -------------------------------------------------------
[INFO] Running ch04.SpeechTTSTest
INFO  org.springframework.test.context.support.
AnnotationConfigContextLoaderUtils -- Could not detect default 
configuration classes for test class [ch04.SpeechTTSTest]: 
SpeechTTSTest does not declare any static, non-private, non-
final, nested classes annotated with @Configuration.
INFO  org.springframework.boot.test.context.SpringBootTest 
ContextBootstrapper -- Found @SpringBootConfiguration ch04.
Ch04Configuration for test class ch04.SpeechTTSTest
[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time 
elapsed: 2.532 s -- in ch04.SpeechTTSTest

Chapter 4  Working with Audio



105

If you chose to add the line for writing the file output to disk, you can 

open up the resulting MP3 file and have a listen. This test will sound more 

like spoken word than singing as there is no “singing” option within the 

OpenAI API; the result is a particularly passionless rendering of a silly love 

song and might be worth listening to only for humor’s sake.

Let’s say we wanted to pass some extra options to make it more like 

a song. Our endless testing with the API brought us to use the voice 

“Shimmer” and slow down the speed to 0.7 which makes it sound more 

like singing. We can pass a custom OpenAiAudioSpeechOptions with these 

options using a custom test like so.

Listing 4-8.  chapter04/src/test/java/ch04/

SpeechTTSTestWithOptions.java

package ch04;

import ch04.service.TextToSpeechService;
import org.junit.jupiter.api.Test;
import org.springframework.ai.openai.OpenAiAudioSpeechOptions;
import org.springframework.ai.openai.api.OpenAiAudioApi;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

import static org.junit.jupiter.api.Assertions.assertNotNull;

@SpringBootTest(webEnvironment = SpringBootTest.
WebEnvironment.MOCK)
public class SpeechTTSTestWithOptions {

    @Autowired
    TextToSpeechService textToSpeechService;

Chapter 4  Working with Audio



106

    @Test
    void runTTSQuery() throws IOException {
        �var responseAsBytes = textToSpeechService.

processText("""
 Daisy, Daisy,
 Give me your answer, do!
 I'm half crazy,
 All for the love of you!
 It won't be a stylish marriage,
 I can't afford a carriage,
 But you'll look sweet upon the seat
 Of a bicycle built for two!
""", new OpenAiAudioSpeechOptions.Builder()
                �.withModel(OpenAiAudioApi.TtsModel.TTS_1_HD.value)
                �.withVoice(OpenAiAudioApi.SpeechRequest.Voice.

SHIMMER)
                .withSpeed(0.7f)
        );

        �Files.write(Paths.get("./daisybell.mp3"), 
responseAsBytes);

        assertNotNull(responseAsBytes);
    }

}

This test generates an MP3 file on disk which, with the given options, 

aims to sound more like a song. However, it’s safe to say that vocalists like 

Celine Dion, Adele, and Janis Joplin have nothing to worry about from 

OpenAI just yet. The Whisper model we are using has been trained on 

the spoken word in the various supported languages. In order to provide 

Chapter 4  Working with Audio



107

a method of “text-to-sing,” we’d need to model the aspects of melody, 

pitch, rhythm, and the various other musical elements involved in realistic 

sounding singing.

There are general purpose TTS systems on the market today (Tacotron 

2, WaveNet, and FastSpeech) that can be adapted by training the model on 

singing data including the music and patterns involved. It would also be 

important to provide the actual melody in the form of perhaps a MIDI file 

to teach the model the song it’s singing.

�Transcription
The other primary method available in these modules is the ability of 

Spring AI to integrate with a provider like OpenAI to transcribe audio of 

spoken words to text. Our tests previously have been using the lyrics to 

“Daisy Bell,” and we will continue that here. A search on Wikipedia gives 

us a FLAC file of the original recording. If you’d like to download the file 

using the command line tool curl, you can see how to do that below, or 

opening a browser and saving the file to disk from the URL: https://bit.
ly/daisy_bell_dectalk.

Listing 4-9.  Download the Daisy Bell FLAC file

curl -O 'https://bit.ly/daisy_bell_dectalk'

Our transcription test will be based on this song; after downloading, 

you can place the file in the chapter’s src/test/resources directory. 

The test is fairly simple, we’ll read the file from the classpath and pass 

the audio content to the TranscribeService and call the single method 

transcribeAudio. The response we receive back will be verified using 

an assertion of a phrase from the original lyrics, because transcription is 

not an exact art. Even when the words match (as they usually will), the 

punctuation can be different, so an exact match of the output is unlikely. 

As a result, we’re going to search for a phrase we do indeed fully expect to 

be in the output (the closing line) and leave it at that.

Chapter 4  Working with Audio

https://bit.ly/daisy_bell_dectalk
https://bit.ly/daisy_bell_dectalk


108

Let’s take a look at our test.

Listing 4-10.  chapter04/src/test/java/ch04/TranscribeTest.java

package ch04;

import ch04.service.TranscribeService;
import org.junit.jupiter.api.Test;
import org.spring 
framework.ai.audio.transcription.AudioTranscriptionResponse;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.Resource;

import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertTrue;

@SpringBootTest(webEnvironment = SpringBootTest.
WebEnvironment.MOCK)
public class TranscribeTest {

    @Autowired
    TranscribeService transcribeService;

    @Test
    void transcribeQuery() {
        �Resource daisyBellResource = new 

ClassPathResource("Daisy_Bell_sung_by_DECtalk.flac");
        �AudioTranscriptionResponse response = transcribeService 

.transcribeAudio(daisyBellResource, null);
        System.out.println(response.getResult().getOutput());
        �assertTrue(response.getResult().getOutput().

contains("the seat of a bicycle built for two"));
    }
}

Chapter 4  Working with Audio



109

We can’t quite run this yet since the TranscribeService doesn’t exist. 

If a reader looks at the assertion, we might also notice that what we’re 

verifying is not exactly the original lyrics. Listening to the recording, we 

could definitely see how OpenAI would mistake “do” with “too.” Now 

let’s take a look at the TranscribeService and see how we make the 

transcription magic happen.

Listing 4-11.  chapter04/src/main/java/ch04/service/

TranscribeService.java

package ch04.service;

import org.springframework.ai.audio.transcription. 
AudioTranscriptionPrompt;
import org.springframework.ai.audio.transcription. 
AudioTranscriptionResponse;
import org.springframework.ai.openai.OpenAiAudioTranscrip
tionModel;
import 
org.springframework.ai.openai.OpenAiAudioTranscriptionOptions;
import org.springframework.core.io.Resource;
import org.springframework.stereotype.Service;

@Service
public class TranscribeService {

    �private final OpenAiAudioTranscriptionModel 
transcriptionModel;

    �public TranscribeService(OpenAiAudioTranscriptionModel 
transcriptionModel) {

        this.transcriptionModel = transcriptionModel;
    }

Chapter 4  Working with Audio



110

    �public AudioTranscriptionResponse transcribeAudio(Resource 
audioResource, OpenAiAudioTranscriptionOptions.Builder 
transcriptionOptions) {

        �var transcriptionRequest = transcriptionOptions != 
null ? new AudioTranscriptionPrompt(audioResource, 
transcriptionOptions.build()) : new AudioTranscriptionP
rompt(audioResource);

        return transcriptionModel.call(transcriptionRequest);
    }
}

We have an OpenAiAudioTranscriptionModel available which we’ll 

use Spring’s dependency injection to reference in our TranscribeService.

Issuing a call to OpenAI, we build an AudioTranscriptionPrompt 

and pass the text we’d like to use to generate the output. If we don’t pass 

an OpenAiAudioTranscriptionOptions object into the transcribeAudio 

method, it will by default use the options from application.properties if 

specified.

Once we have a prompt, we issue a call to the API, whether blocking or 

streaming; in this case, we don’t care about streaming, so we use call() to 

get the response specification.

Once we have the response specification, we can get the recording by 

using the getResult().getOutput() method which returns a String. As 

with other calls, we could choose to look at the metadata which is available 

from the call to getResult() and for our test and usage we’re focused only 

on the output.

We’ve got something to test now, so we can run this chapter’s test suite 

by using Maven.

mvn -am -pl chapter04 clean test

Chapter 4  Working with Audio



111

If the stars align and the AI hasn’t done any hallucinating during 

your test, you should see SUCCESS in the test. You can see a run for the 

TranscribeTest below.

[INFO] -------------------------------------------------------
[INFO]  T E S T S
[INFO] -------------------------------------------------------
[INFO] Running ch04.TranscribeTest
INFO  org.springframework.test.context.support.
AnnotationConfigContextLoaderUtils -- Could not detect default 
configuration classes for test class [ch04.TranscribeTest]: 
TranscribeTest does not declare any static, non-private,  
non-final, nested classes annotated with @Configuration.
INFO  org.springframework.boot.test.context.
SpringBootTestContextBootstrapper -- Found  
@SpringBootConfiguration ch04.Ch04Configuration for test class 
ch04.TranscribeTest

Powered by Spring Boot 3.3.0
INFO  ch04.TranscribeTest -- Starting TranscribeTest using Java 
21.0.3 with PID 12317 (started by kinabalu in /Users/kinabalu/
workspace/beginningspring/bsai/code/chapter04)
INFO  ch04.TranscribeTest -- No active profile set, falling 
back to 1 default profile: "default"
INFO  ch04.TranscribeTest -- Started TranscribeTest in 0.816 
seconds (process running for 1.303)
WARNING: A Java agent has been loaded dynamically (/Users/
kinabalu/.m2/repository/net/bytebuddy/byte-buddy-agent/1.14.16/
byte-buddy-agent-1.14.16.jar)
WARNING: If a serviceability tool is in use, please run  
with -XX:+EnableDynamicAgentLoading to hide this warning
WARNING: If a serviceability tool is not in use, please run 
with -Djdk.instrument.traceUsage for more information

Chapter 4  Working with Audio



112

WARNING: Dynamic loading of agents will be disallowed by 
default in a future release
Daisy, Daisy, give me your answer, too. I'm half crazy, all for 
the love of you. It won't be a stylish marriage. I can't afford 
a carriage. But you'd look sweet on the seat of a bicycle built 
for two.

[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time 
elapsed: 3.347 s -- in ch04.TranscribeTest

The neat thing to consider here is that the phrase is actually rendered 

pretty well; we expect it to render the number two (as in “a bicycle built 

for two”) and not the homonym “too”—the AI model is usually going 

to infer the proper words based on the phrases in the song, so while 

the punctuation and capitalization may be slightly variable, in general 

it’s rendering a quite recognizable transcription of the input, without 

necessarily recognizing the song itself.

The following table shows many of the transcription options available 

in this module of Spring AI and passed on to OpenAI.

Property Description

spring.ai.openai.audio.

transcription.options.model

ID of the model to use. Only whisper-1 (which is 

powered by our open source Whisper V2 model) is 

currently available.

spring.ai.openai.audio.

transcription.options.

response-format

The format of the transcript output, in one of these 

options: json, text, srt, verbose_json, or vtt.

spring.ai.openai.audio.

transcription.options.prompt

An optional text to guide the model’s style or 

continue a previous audio segment. The prompt 

should match the audio language.
(continued)

Chapter 4  Working with Audio



113

Property Description

spring.ai.openai.audio.

transcription.options.language

The language of the input audio. Supplying the input 

language in ISO-639-1 format will improve accuracy 

and latency.

spring.ai.openai.audio.

transcription.options.

temperature

The sampling temperature, between 0 and 1. Higher 

values like 0.8 will make the output more random, 

while lower values like 0.2 will make it more 

focused and deterministic. If set to 0, the model will 

use log probability to automatically increase the 

temperature until certain thresholds are hit.

spring.ai.openai.audio.

transcription.options.

timestamp_granularities

The timestamp granularities to populate for 

this transcription. response_format must be set 

verbose_json to use timestamp granularities. 

Either or both of these options are supported: word 

or segment. Note: There is no additional latency 

for segment timestamps, but generating word 

timestamps incurs additional latency.

�REST Example
A real-world example might be an endpoint using Spring MVC which 

processes text or audio files. Our next step will be setting up two simple 

POST endpoints, one which accepts a String of text and the other which 

accepts an audio file.

Chapter 4  Working with Audio



114

Calling this endpoint might look something like this.

Listing 4-12.  Calling the TTS endpoint with Daisy Bell lyrics

curl -X POST http://localhost:8080/api/tts \
-H "Content-Type: application/json" \
--output test.mp3 \
--data-binary @- << EOF
{"text": "Daisy, Daisy, \nGive me your answer, do! \nI'm half 
crazy, \nAll for the love of you! \nIt won't be a stylish 
marriage, \nI can't afford a carriage, \nBut you'll look sweet 
upon the seat \nOf a bicycle built for two!"}
EOF

The above is passing a JSON object with a key of text and the value as 

the string we’re looking to pass in. Running this command will look like the 

following depending on what text you pass in. For our case, we’re passing 

in the contents of the song.

curl -X POST http://localhost:8080/api/tts \
-H "Content-Type: application/json" \
--output test.mp3 \
--data-binary @- << EOF
{"text": "Daisy, Daisy, \nGive me your answer, do! \nI'm half 
crazy, \nAll for the love of you! \nIt won't be a stylish 
marriage, \nI can't afford a carriage, \nBut you'll look sweet 
upon the seat \nOf a bicycle built for two!"}
EOF
 % Total   % Received % Xferd  Average Speed   Time Time    Time  Current

                               Dload   Upload Total Spent   Left    Speed

100 240k 100 240k   100 229    97535   90   0:00:02  0:00:02 --:--:-- 97650

Chapter 4  Working with Audio



115

For transcribing an audio file containing spoken words, we can 

imagine the curl command to look like this.

Listing 4-13.  Sending the Daisy Bell audio file to transcribe 

endpoint

curl -X POST http://localhost:8080/api/transcribe \
-F "file=@./src/test/resources/Daisy_Bell_sung_by_DECtalk.flac"

Running this from the chapter root should pick up the file that was 

downloaded earlier in the chapter and imagine it would return back 

the transcribed text. Output from this file will look something like the 

following:

% curl -X POST http://localhost:8080/api/transcribe \
-F "file=@./src/test/resources/Daisy_Bell_sung_by_DECtalk.flac"
Daisy, Daisy, give me your answer, do. I'm half-crazy all for 
the love of you. It won't be a stylish marriage, I can't afford 
a carriage. But you'd look sweet on the seat of a bicycle built 
for two.

We’ll start our implementation by creating a simple data class called 

TextToSpeechRequest which we can use for our endpoint /api/tts.

Listing 4-14.  chapter04/src/main/java/ch04/model/

TextToSpeechRequest.java

package ch04.model;

public record TextToSpeechRequest (String text) { }

After this our implementation will be fairly straightforward using 

Spring MVC. We will use dependency injection to insert our two services: 

TextToSpeechService and TranscribeService. Our two handlers will 

Chapter 4  Working with Audio



116

accept POST requests with either a @RequestBody of TextToSpeechRequest 

as we saw above for processing the text to speech, or a MultipartFile for 

transcription.

Listing 4-15.  chapter04/src/main/java/ch04/handler/ 

AudioTextController.java

package ch04.handler;

import ch04.model.TextToSpeechRequest;
import ch04.service.TextToSpeechService;
import ch04.service.TranscribeService;
import ch04.service.VoiceAssistantService;
import org.springframework.core.io.ByteArrayResource;
import org.springframework.http.HttpHeaders;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.*;
import org.springframework.web.multipart.MultipartFile;
import org.springframework.web.server.ResponseStatusException;

import java.io.IOException;

@RestController
@RequestMapping("/api")
public class AudioTextController {

    private final TextToSpeechService textToSpeechService;

    private final TranscribeService transcribeService;

    private final VoiceAssistantService voiceAssistantService;

    �public AudioTextController(TextToSpeechService 
textToSpeechService, TranscribeService transcribeService, 
VoiceAssistantService voiceAssistantService) {

Chapter 4  Working with Audio



117

        this.textToSpeechService = textToSpeechService;
        this.transcribeService = transcribeService;
        this.voiceAssistantService = voiceAssistantService;
    }

    @PostMapping("/tts")
    �public ResponseEntity<byte> handleTextToSpeech(@RequestBody 

TextToSpeechRequest textToSpeechRequest) {
        �byte[] speechResult = textToSpeechService.

processText(textToSpeechRequest.text(), null);

        HttpHeaders headers = new HttpHeaders();
        �headers.add(HttpHeaders.CONTENT_DISPOSITION, 

"attachment; filename=output.mp3");
        headers.add(HttpHeaders.CONTENT_TYPE, "audio/mpeg");

        �return new ResponseEntity(speechResult, headers, 
HttpStatus.OK);

    }

    @PostMapping("/transcribe")
    �public ResponseEntity<String> handleAudioUpload(@

RequestParam("file") MultipartFile file) {
        if (file.isEmpty()) {
            �return new ResponseEntity<>("No file uploaded", 

HttpStatus.BAD_REQUEST);
        }

        try {
            �var response = transcribeService.

transcribeAudio(new ByteArrayResource(file.
getBytes()), null);

            return new ResponseEntity<>(response.getResult().

Chapter 4  Working with Audio



118

getOutput(), HttpStatus.OK);
        } catch (IOException e) {
            �return new ResponseEntity<>("Failed to upload 

file", HttpStatus.INTERNAL_SERVER_ERROR);
        }
    }

    @PostMapping("/assistant")
    �public ResponseEntity<byte[]> handleVoiceAssistantRequest 

(@RequestParam("file") MultipartFile file) {
        if (file.isEmpty()) {
            �throw new ResponseStatusException(HttpStatus. 

BAD_REQUEST, "No file uploaded");
        }

        try {
            �var response = voiceAssistantService.issueCommand 

(new ByteArrayResource(file.getBytes()));

            �return new ResponseEntity<>(response, 
HttpStatus.OK);

        } catch (IOException e) {
            �throw new ResponseStatusException(HttpStatus.

INTERNAL_SERVER_ERROR, "Failed to upload file");
        }
    }
}

We can run this from the chapter root using Maven.

mvn -pl chapter04 -am spring-boot:run

Chapter 4  Working with Audio



119

After running spring-boot:run, you’ll see output like below indicating 

that the server is running.

  .   ____          _            __ _ _
 /\\ / ___'_ __ _ _(_)_ __  __ _ \ \ \ \
( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/  ___)| |_)| | | | | || (_| |  ) ) ) )
  '  |____| .__|_| |_|_| |_\__, | / / / /
 =========|_|==============|___/=/_/_/_/

 :: Spring Boot ::                (v3.3.0)

2024-11-17T19:20:02.448-08:00  INFO 14015 --- [           main] 
ch04.Ch04Configuration                   : Starting 
Ch04Configuration using Java 21.0.3 with PID 14015 (/Users/
kinabalu/workspace/beginningspring/bsai/code/chapter04/target/
classes started by kinabalu in /Users/kinabalu/workspace/
beginningspring/bsai/code/chapter04)
2024-11-17T19:20:02.449-08:00  INFO 14015 --- [           main] 
ch04.Ch04Configuration                   : No active profile 
set, falling back to 1 default profile: "default"
2024-11-17T19:20:02.864-08:00  INFO 14015 --- [           main] 
o.s.b.w.embedded.tomcat.TomcatWebServer  : Tomcat initialized 
with port 8080 (http)
2024-11-17T19:20:02.870-08:00  INFO 14015 --- [           main] 
o.apache.catalina.core.StandardService   : Starting service 
[Tomcat]
2024-11-17T19:20:02.870-08:00  INFO 14015 --- [           main] 
o.apache.catalina.core.StandardEngine    : Starting Servlet 
engine: [Apache Tomcat/10.1.24]
2024-11-17T19:20:02.895-08:00  INFO 14015 --- [           main] 
o.a.c.c.C.[Tomcat].[localhost].       : Initializing Spring 
embedded WebApplicationContext

Chapter 4  Working with Audio



120

2024-11-17T19:20:02.895-08:00  INFO 14015 --- [           main] 
w.s.c.ServletWebServerApplicationContext : Root 
WebApplicationContext: initialization completed in 365 ms
2024-11-17T19:20:03.177-08:00  INFO 14015 --- [           main] 
o.s.b.w.embedded.tomcat.TomcatWebServer  : Tomcat started on 
port 8080 (http) with context path '/'
2024-11-17T19:20:03.182-08:00  INFO 14015 --- [           main] 
ch04.Ch04Configuration                   : Started 
Ch04Configuration in 0.861 seconds (process running for 1.002)
2024-11-17T19:20:37.051-08:00  INFO 14015 --- [nio-8080-exec-1] 
o.a.c.c.C.[Tomcat].[localhost].       : Initializing Spring 
DispatcherServlet 'dispatcherServlet'
2024-11-17T19:20:37.051-08:00  INFO 14015 --- [nio-8080-exec-1] 
o.s.web.servlet.DispatcherServlet        : Initializing Servlet 
'dispatcherServlet'
2024-11-17T19:20:37.052-08:00  INFO 14015 --- [nio-8080-
exec-1] o.s.web.servlet.DispatcherServlet        : Completed 
initialization in 1 ms

In a separate terminal session, we can use the curl commands above 

and see the API responses sent back similarly as with the tests.

�A Simple Voice Assistant
Siri was the first voice-activated assistant available in a consumer device in 

early 2010. Likely due to it being the first and the compute power required 

it was mired in problems as it had to process speech using cloud servers 

and thus required a stable and fast Internet connection. Fast forward to 

today and thanks to the advancements in natural language processing 

and on-device hardware, we’ve moved to a context aware system that 

understands your speech and most requests you give it.

Chapter 4  Working with Audio



121

We are going to use what we’ve learned in this chapter and borrow 

code from the previous to create a simple virtual assistant. This is only a 

simple example, and if you were building an actual voice assistant, other 

choices would be more appropriate from a technology perspective.

�The Voice Assistant Task

This task will create a new service called VirtualAssistantService 

which will make calls to the other two services we built in this chapter. 

In addition, we will add integration with the UpdateChatService from 

Chapter 3 to act on our lights via the chosen LLM.

We’re going to take a slight shortcut for the audio command portion in 

our example and use the TextToSpeechService for creating the audio. If 

you would like to record the audio command yourself, we will call out how 

you can modify the VoiceAssistantServiceTest to pick up your file. If we 

think about this logically using the code we have today, we will be doing 

the following actions:

	 1.	 Generate the audio file with the command using the 

TextToSpeechService.

	 2.	 Take that audio file (or one you record yourself) and 

pass it to the TranscribeService to include in our 

prompt to UpdateChatService.

	 3.	 We’ll pass the text from the TranscribeService to 

the converse method of UpdateChatService which 

calls the appropriate function based on the audio 

command.

	 4.	 Finally, we’ll pass the text output of the converse 

method to the TextToSpeechService and save the 

resulting spoken word audio to disk.

Chapter 4  Working with Audio

https://doi.org/10.1007/979-8-8688-1291-0_3


122

With that, our first task is including Chapter 3 in our maven 

configuration files. This will let us re-use the services and methods 

involved in our ability to manage the real world we created in the previous 

chapter of light management using the LLM. We’re including the updated 

pom.xml which includes a reference to chapter03.

Listing 4-16.  chapter04/pom.xml

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
         http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>com.apress</groupId>
        <artifactId>bsai-code</artifactId>
        <version>1.0</version>
    </parent>

    <artifactId>chapter04</artifactId>
    <version>1.0</version>

    <properties>
    </properties>

    <dependencies>
        <dependency>
            <groupId>com.apress</groupId>
            <artifactId>chapter03</artifactId>
            <version>1.0</version>
        </dependency>

Chapter 4  Working with Audio

https://doi.org/10.1007/979-8-8688-1291-0_3


123

        <dependency>
            <groupId>org.springframework.ai</groupId>
            �<artifactId>spring-ai-openai-spring-boot-starter 

</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
            <exclusions>
                <exclusion>
                    �<groupId>com.vaadin.external.google 

</groupId>
                    <artifactId>android-json</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                �<artifactId>spring-boot-maven-plugin 

</artifactId>
                <configuration>
                    <skip>false</skip>
                </configuration>

Chapter 4  Working with Audio



124

                <executions>
                    <execution>
                        <goals>
                            <goal>repackage</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

Our next task is to modify our @Configuration to include the 

UpdateChatService along with its dependencies. We are also creating 

some mocked light status that we can act on with our voice assistant. 

Here’s an updated Ch04Configuration file with those new elements 

defined.

Listing 4-17.  chapter04/src/main/java/ch04/

Ch04Configuration.java

package ch04;

import ch03.model.Light;
import ch03.service.UpdateChatService;
import ch03.service.UpdateLightStatusFunction;
import ch03.service.LightService;
import ch03.service.RequestLightStatusFunction;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBoot 
Application;

Chapter 4  Working with Audio



125

import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Description;

@SpringBootApplication
public class Ch04Configuration {
    @Bean
    Light getYellowLight() {
        return new Light("yellow", false);
    }

    @Bean
    Light getRedLight() {
        return new Light("red", true);
    }

    @Bean
    Light getGreenLight() {
        return new Light("green", false);
    }

    @Bean
    Light getBlueLight() {
        return new Light("blue", true);
    }

    @Bean
    LightService getLightService(ApplicationContext context) {
        return new LightService(context);
    }

    @Bean("RequestLightStatusService")
    @Description("Get light status")
    �RequestLightStatusFunction getRequestLightStatusFunction 

(LightService lightService) {

Chapter 4  Working with Audio



126

        return new RequestLightStatusFunction(lightService);
    }

    @Bean("ChangeLightStatusService")
    @Description("Change a light's state")
    �UpdateLightStatusFunction getChangeLightStatusFunction 

(LightService lightService) {
        return new UpdateLightStatusFunction(lightService);
    }

    @Bean
    �UpdateChatService getLightUpdateChatService(ChatClient.

Builder builder) {
        return new UpdateChatService(builder);
    }

    public static void main(String[] args) {
        SpringApplication.run(Ch04Configuration.class, args);
    }
}

Due to all the work we’ve done previously, this is all the configuration 

necessary to make a voice assistant like we’ve mapped out work. Our next 

step is to write up a test for what we want to ask. As we promised earlier, 

we’ll show you some code inline that can be used if you want to record 

your own voice command. For reference, the configuration above has the 

light states as the following:

Light Name Status

yellow Off

red On

Green Off

Blue On

Chapter 4  Working with Audio



127

Let’s take a look at a test which will send a “voice” command to our 

LLM asking it to “Turn on yellow light” and gets an spoken word audio file 

back in response.

Listing 4-18.  chapter04/src/test/java/ch04/ 
VoiceAssistantTest.java

package ch04;

import ch04.service.VoiceAssistantService;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.core.io.ByteArrayResource;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

import static org.junit.jupiter.api.Assertions.assertNotNull;

@SpringBootTest(webEnvironment = SpringBootTest.
WebEnvironment.MOCK)
public class VoiceAssistantTest {

    @Autowired
    VoiceAssistantService voiceAssistantService;

    @Test
    void runVoiceAssistantCommand() throws IOException {
        �byte[] audioCommandAsBytes = Files.readAllBytes(Paths.

get("./voice_assistant_command.mp3"));
        �byte[] audioResponseBytes = voiceAssistantService.

issueCommand(new ByteArrayResource(audioCommand
AsBytes));

Chapter 4  Working with Audio



128

//        �byte[] audioResponseBytes = voiceAssistantService.
issueCommand("Turn on yellow light.");

        assertNotNull(audioResponseBytes);
        �Files.write(Paths.get("./voice_assistant_response.

mp3"), audioResponseBytes);
    }

}

The test we crafted involves calling the VoiceAssistantService with 

text of “Turn on yellow light.” and receives a byte array which is the MP3 

audio file of the LLM response. After receiving the byte array, we assert that 

it’s not null and write the MP3 file to disk.

Now it’s time to implement our somewhat convoluted 

VoiceAssistantService that our test calls to see this thing working.

Listing 4-19.  chapter04/src/main/java/ch04/service/

VoiceAssistantService.java

package ch04.service;

import ch03.service.UpdateChatService;
import org.springframework.ai.audio.transcription. 
AudioTranscriptionResponse;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.core.io.ByteArrayResource;
import org.springframework.core.io.Resource;
import org.springframework.stereotype.Service;

import java.util.List;

@Service
public class VoiceAssistantService {

    private final UpdateChatService updateChatService;

Chapter 4  Working with Audio



129

    private final TranscribeService transcribeService;

    private final TextToSpeechService textToSpeechService;

    �public VoiceAssistantService(UpdateChatService 
updateChatService, TranscribeService transcribeService, 
TextToSpeechService textToSpeechService) {

        this.updateChatService = updateChatService;
        this.transcribeService = transcribeService;
        this.textToSpeechService = textToSpeechService;
    }

    public byte[] issueCommand(Resource capturedAudio) {
        �AudioTranscriptionResponse response = transcribe 

Service.transcribeAudio(capturedAudio, null);

        String output = response.getResult().getOutput();
        var updateResponse = updateChatService.converse(
                List.of(
                        new UserMessage(output)
                )
        );

        �return textToSpeechService.processText(updateResponse.
getFirst().getOutput().getContent(), null);

    }

    public byte[] issueCommand(String commandText) {
        �var responseAsBytes = textToSpeechService.processText 

(commandText, null);

        �return this.issueCommand(new ByteArrayResource 
(responseAsBytes));

    }
}

Chapter 4  Working with Audio



130

We’ve implemented two methods here for issueCommand. The primary 

method takes a Resource which we expect to include the recorded speech 

command “Turn on yellow light”; the other uses the TextToSpeechService 

in case you don’t have a way of recording audio and passing it to the 

service. For our test as written, it uses the method accepting a String to 

simplify the example. The method transcribes the audio file with spoken 

words in it, passes it to the UpdateChatService for processing using the 

“real world,” and then takes the LLM’s text response and returns it as 

spoken word audio.

Let’s re-run our tests for chapter04:

mvn clean test -am -pl chapter04

If all worked as expected, there should be an audio file saved on the 

filesystem named “voice_assistant_response.mp3”, and playing it on 

your system, it will contain a message like “The yellow light has been 

turned on.” We have included the maven output from our run for the 

VoiceAssistantTest class below.

[INFO] -------------------------------------------------------
[INFO]  T E S T S
[INFO] -------------------------------------------------------
[INFO] Running ch04.VoiceAssistantTest
INFO  org.springframework.test.context.support.
AnnotationConfigContextLoaderUtils -- Could not detect default 
configuration classes for test class [ch04.VoiceAssistantTest]: 
VoiceAssistantTest does not declare any static, non-private, 
non-final, nested classes annotated with @Configuration.
INFO  org.springframework.boot.test.context.
SpringBootTestContextBootstrapper -- Found  
@SpringBootConfiguration ch04.Ch04Configuration for test class 
ch04.VoiceAssistantTest

Chapter 4  Working with Audio



131

INFO  ch03.service.UpdateLightStatusFunction -- Changing status 
for light: Request[color=yellow, on=true]
[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time 
elapsed: 3.998 s -- in ch04.VoiceAssistantTest

As we indicated earlier, if you want to record your own audio 

command, you can change the test to accommodate loading an MP3 file 

and sending that through the process. Simply load your MP3 file (here we 

assume voice_assistant_command.mp3 as a name) and pass that to the 

issueCommand method wrapped in a ByteArrayResource.

Something like the following.

        �byte[] audioCommandAsBytes = Files.readAllBytes(Paths.
get("./voice_assistant_command.mp3"));

        �byte[] audioResponseBytes = voiceAssistantService.
issueCommand(new ByteArrayResource(audioCommandAsBytes));

There you have it, a voice assistant that understands you.

�Next Steps
In our next chapter, we’re going to look at image generation with Spring AI 

and object identification in images using the multimodality API.

Chapter 4  Working with Audio



133© Andrew Lombardi and Joseph Ottinger 2025 
A. Lombardi and J. Ottinger, Beginning Spring AI, Apress Pocket Guides,  
https://doi.org/10.1007/979-8-8688-1291-0_5

CHAPTER 5

Generating Images

�Generating and Recognizing Images
The 1960s were an important time for the process of image recognition and 

generation similar to what we explored with audio in the previous chapter. 

Early image recognition using computer vision systems was focused 

on simple geometric shapes which evolved into techniques like edge 

detection and template matching. The complexity inherent in an image 

meant that these early techniques while impressive for their time were 

unable to deal with anything more than a very structured environment.

Over the years with advancements in usage of neural networks for 

learning-based approaches and later Support Vector Machines and other 

feature-based methods, object detection and classification had reached a 

well-defined commercial appeal especially with faster available hardware. 

Fast-forward to the last 25 years, the development of Convolutional 

Neural Networks (CNNs) and advanced GPU processing has exploded the 

capabilities of image recognition. The techniques utilized in most of the 

chat models available via Spring AI use some variant of transformers like 

Vision Transformers to perform their work.

As of this writing, the following offerings can perform image 

recognition via Spring AI:

•	 OpenAI (e.g., GPT-4 and GPT-4o models)

•	 Ollama (e.g., LlaVa, Baklava, Llama3.2 models)

https://doi.org/10.1007/979-8-8688-1291-0_5#DOI


134

•	 Vertex AI Gemini (e.g., gemini-1.5-pro-001, gemini-1.5- 

flash-001 models)

•	 Anthropic Claude 3

Image generation has experienced a similar trajectory and progression 

over the past 60 years. Early efforts in the 1960s laid the foundation, 

advancing through the 1980s and 1990s with innovations in 3D modeling, 

texturing, and realistic lighting using mathematically simulated scenes. 

The field took a significant leap forward in the last 20 years with the 

invention of Generative Adversarial Networks by Ian Goodfellow, which 

used two neural networks in tandem to create convincingly realistic 

images. More recently, the advent of text-to-image generation models, 

starting with early examples like DALL-E 1, marked another transformative 

phase. In 2022, diffusion models entered the commercial mainstream 

with notable releases such as DALL-E 2, Midjourney, and Stable Diffusion, 

delivering unprecedented realism and image quality.

As of this writing, the following are offered by Spring AI for image 

generation:

•	 OpenAI

•	 QianFan

•	 StabilityAI

•	 ZhiPuAI

First task we’ll do is to create our directory structure for this chapter. 

This can be created in the “project directory” as in previous chapters with 

the following command, if you’re running a POSIX shell like bash or zsh.

Listing 5-1.  Creating the project directory structure in POSIX

mkdir -p src/{main,test}/{java,resources}

Chapter 5  Generating Images



135

This is this chapter’s project file, and thus it’s in a directory under the 

top-level directory, called chapter05, and the file is named pom.xml. A 

few items to note here, just as in Chapter 4, we are going to include the 

chapter03 module for a fun final challenge and a library extension for 

ImageIO found at https://github.com/haraldk/TwelveMonkeys which 

enables dealing with webp images.1 We have included a simple class which 

can write these files to disk and convert them to PNG before doing so.

Listing 5-2.  chapter05/pom.xml

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
         http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>com.apress</groupId>
        <artifactId>bsai-code</artifactId>
        <version>1.0</version>
    </parent>

    <artifactId>chapter05</artifactId>
    <version>1.0</version>

    <properties>
    </properties>

    <dependencies>
        <dependency>
            <groupId>com.apress</groupId>

1 OpenAI renders and sends down webp images in their API.

Chapter 5  Generating Images

https://doi.org/10.1007/979-8-8688-1291-0_4
https://github.com/haraldk/TwelveMonkeys


136

            <artifactId>chapter03</artifactId>
            <version>1.0</version>
        </dependency>
        <dependency>
            <groupId>org.springframework.ai</groupId>
            �<artifactId>spring-ai-openai-spring-boot-starter 

</artifactId>
        </dependency>
        <dependency>
            <groupId>com.twelvemonkeys.imageio</groupId>
            <artifactId>imageio-webp</artifactId>
            <version>3.12.0</version>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
            <exclusions>
                <exclusion>
                    �<groupId>com.vaadin.external.google 

</groupId>
                    <artifactId>android-json</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
    </dependencies>
</project>

Our application configuration will be automatic just like we’ve shown 

in previous chapters. Your OpenAI API key will again be fed into the 

property spring.ai.openai.api-key. Our configuration will also include 

Chapter 5  Generating Images



137

getters for the yellow, red, green, and blue light properties, and setting up 

for the services and functions made available from the ch03 module to poll 

lights through ChatGPT and update their state.

Listing 5-3.  chapter05/src/main/java/ch05/Ch05Configuration.java

package ch05;

import ch03.model.Light;
import ch03.service.LightService;
import ch03.service.RequestLightStatusFunction;
import ch03.service.UpdateChatService;
import ch03.service.UpdateLightStatusFunction;
import org.springframework.ai.chat.client.ChatClient;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootAp
plication;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Description;

@SpringBootApplication
@Configuration
public class Ch05Configuration {

    @Bean
    Light getYellowLight() {
        return new Light("yellow", false);
    }

    @Bean
    Light getRedLight() {
        return new Light("red", true);
    }

Chapter 5  Generating Images



138

    @Bean
    Light getGreenLight() {
        return new Light("green", false);
    }

    @Bean
    Light getBlueLight() {
        return new Light("blue", true);
    }

    @Bean
    LightService getLightService(ApplicationContext context) {
        return new LightService(context);
    }

    @Bean("RequestLightStatusService")
    @Description("Get light status")
    �RequestLightStatusFunction getRequestLightStatusFunction 

(LightService lightService) {
        return new RequestLightStatusFunction(lightService);
    }

    @Bean("ChangeLightStatusService")
    @Description("Change a light's state")
    �UpdateLightStatusFunction getChangeLightStatusFunction(Ligh

tService lightService) {
        return new UpdateLightStatusFunction(lightService);
    }

    @Bean
    �UpdateChatService getLightUpdateChatService(ChatClient.

Builder builder) {
        return new UpdateChatService(builder);
    }

Chapter 5  Generating Images



139

    public static void main(String[] args) {
        SpringApplication.run(Ch05Configuration.class, args);
    }
}

The OpenAiImageApi has a single request module OpenAiImageRequest 

which at a minimum would include the prompt we’d use for instructing 

either the generation which invokes DALL-E or the recognition which 

invokes CLIP. You will get a sense of the available options from the table 

below which can be included in properties or passed in with the request.

Property name Description

spring.ai.openai. 
api-key

The API key to be used by the application. Again for 

some reason, this isn’t utilized by OpenAiImageApi, 

but we’ll continue with this convention here.

spring.ai.openai.
organization-id

Optionally specify the organization to use in the API 

request.

spring.ai.openai.
project-id

Optionally specify the project used for this API request.

The prefix spring.ai.openai.image is the property prefix that let’s you 

configure the ImageModel implementation for OpenAI.

Property name Description

spring.ai.openai.image.
enabled

Enable OpenAI image model (we don’t know why 

you would want to disable this but there you go).

spring.ai.openai.image.
options.n

Images to generate, for dall-e-3 n=1 but can 

be up to 10 for dall-e-2.
(continued)

Chapter 5  Generating Images



140

Property name Description

spring.ai.openai.image.
options.model

The model to use for image generation. The 

OpenAiImageApi.DEFAULT_IMAGE_MODEL is 

dall-e-3, but you can specify dall-e-2 as 

well for speed and cost.

spring.ai.openai.image.
options.quality

Image quality by default will be standard, but if 

using the dall-e-3 model, you can specify hd, 

and the image will have finer details and greater 

consistency across the image.

spring.ai.openai.image.
options.response_format

The format in which the generated images are 

returned. Must be one of URL or b64_json.

spring.ai.openai.image.
options.size

Size of generated images. Must be one of 

256x256, 512x512, or 1024x1024 for 

dall-e-2. Must be one of 1024x1024, 

1792x1024, or 1024x1792 for dall-e-3 

models.

spring.ai.openai.image.
options.size_width

Width of the generated images. Must be one of 

256, 512, or 1024 for dall-e-2.

spring.ai.openai.image.
options.size_height

Height of the generated images. Must be one of 

256, 512, or 1024 for dall-e-2.

spring.ai.openai.image.
options.style

Style of the generated images. Either vivid or 

natural. Vivid causes the model to lean toward 

generating hyper-real and dramatic images. 

Natural causes the model to produce more 

natural, less hyper-real looking images. This 

parameter is only supported for dall-e-3.

spring.ai.openai.image.
options.user

A unique identifier representing your end user, 

which can help OpenAI to monitor and detect 

abuse.

Chapter 5  Generating Images



141

This chapter similar to Chapter 4 will include all tests which will 

perform executions against the OpenAI API. We will have the opportunity 

to go a bit deeper and use both the image generation and recognition 

pieces of the API in concert to create a silly but useful execution path 

utilizing Spring AI’s image and multimodal modules.2

�Image Generation
Our first test case will be a simple prompt for generating an image. It is 

incredible to think about the mountain of image data and technological 

achievement that is involved in taking a random set of text input and 

creating an image to represent it. At a super high level, the text that is 

entered is tokenized with a transformer and converted into a high- 

dimensional embedding. That embedding is then mapped to a shared 

latent space where the relationship between text and visual concepts is 

learned. The latent space is then passed through a generative diffusion 

model to create an image using the text embeddings and decoded into an 

image using CLIP contrastive learning model.

The text prompt we’re using asks DALL-E to imagine a bowl 

of fruit containing bananas, apples, and kiwis. Our code calls the 

ImageGeneratorService which passes back a base64 encoded image 

included in a JSON object.

Listing 5-4.  chapter05/src/test/java/ch05/GenerateImageTest.java

package ch05;

import ch05.service.ImageGeneratorService;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;

2 Multimodal refers to the capability of processing or understanding multiple data 
modality types such as text, images, audio, and video.

Chapter 5  Generating Images



142

import org.springframework.boot.test.context.SpringBootTest;

import javax.imageio.ImageIO;
import java.awt.image.BufferedImage;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.util.Base64;

import static org.junit.jupiter.api.Assertions.assertNotNull;

@SpringBootTest
public class GenerateImageTest {

    @Autowired
    ImageGeneratorService imageGeneratorService;

    @Test
    void runImageGenerationQuery() {
        var image = imageGeneratorService.processPrompt(
                �"Can you create an artistic rendering of a bowl 

full of fruit including only bananas, apples 
and kiwis",null

        );
        assertNotNull(image);

        �byte[] binaryData = Base64.getDecoder().decode(image.
getB64Json());

        �try (ByteArrayInputStream webpStream = new ByteArray 
InputStream(binaryData)) {

            �BufferedImage bufferedImage = ImageIO.
read(webpStream);

            assertNotNull(binaryData);
            �WebpToPngConverter.convertWebpToPng(bufferedImage, 

"./rendered_fruit_bowl.png");

Chapter 5  Generating Images



143

        } catch (IOException e) {
            �System.err.println("IO Error while writing file:  

" + e.getMessage());
        }
    }
}

In a test first methodology we’ve now got something that will 

definitely not pass because it won’t compile without an implementation 

of ImageGeneratorService. We’ll get to the implementation of that in just 

a moment.

For now, the image that gets passed back, if you are interested in the 

output as part of the test the second half of the test writes the file to disk. 

OpenAI generated images are in webp format when they are sent down the 

wire. The webp format is currently the gold standard for web and mobile 

applications due to its more efficient file size and support in all modern 

browsers today. For saving and importing into a design tool though, 

we can’t help but love png for this, so we’ve included a converter from 

webp to png.

Listing 5-5.  chapter05/src/main/java/ch05/ 

WebpToPngConverter.java

package ch05;

import javax.imageio.ImageIO;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;

public class WebpToPngConverter {

    �public static void convertWebpToPng(BufferedImage 
webpImage, String pngPath) {

Chapter 5  Generating Images



144

        try {
            ImageIO.write(webpImage, "png", new File(pngPath));

            �System.out.println("Conversion complete: " + 
pngPath);

        } catch (IOException e) {
            �System.err.println("Failed to convert WEBP to PNG: 

" + e.getMessage());
        }
    }

}

Now we get to the implementation of the ImageGeneratorService 

which has a singular and very simple method called 

processPrompt(String, OpenAiImageOptions.Builder) which takes 

a text prompt and an OpenAiImageOptions object which if null is passed 

we’ll insert some defaults using the application.properties as specified.

With the text prompt given, we issue a call to the API we use call() to 

get the response back from the API which will interface with DALL-E and 

returns back the output of the ImageResponse returned.

Let’s take a look at the actual class and what the implementation 

looks like.

Listing 5-6.  chapter05/src/main/java/ch05/service/

ImageGeneratorService.java

package ch05.service;

import org.springframework.ai.image.Image;
import org.springframework.ai.image.ImageOptionsBuilder;
import org.springframework.ai.image.ImagePrompt;
import org.springframework.ai.image.ImageResponse;
import org.springframework.ai.openai.OpenAiImageModel;

Chapter 5  Generating Images



145

import org.springframework.ai.openai.OpenAiImageOptions;
import org.springframework.stereotype.Service;

@Service
public class ImageGeneratorService {

    private final OpenAiImageModel openAiImageModel;

    �public ImageGeneratorService(OpenAiImageModel 
openAiImageModel) {

        this.openAiImageModel = openAiImageModel;
    }

    �public Image processPrompt(String prompt, OpenAiImage 
Options.Builder imageOptions) {

        �var imagePrompt = imageOptions != null ? new 
ImagePrompt(prompt, imageOptions.build()) : new 
ImagePrompt(prompt,

                �ImageOptionsBuilder.builder().withWidth(1024).
withHeight(1024).build());

        �ImageResponse response = openAiImageModel.call 
(imagePrompt);

        return response.getResult().getOutput();
    }
}

Let’s generate an image since our test will pass. We’ll call the chapter’s 

test suite using Maven:

mvn -am -pl chapter05 clean test

Chapter 5  Generating Images



146

The image that gets output will save in the top-level directory of our 

system. After our prompt, the following was what DALL-E generated 

for us.3

 

Our generative fruit bowl

If everything is working properly, it should complete with 

SUCCESS. After a successful run, you can check the root of the projects 

filesystem and should see a new png image named rendered_fruit_bowl.
png which will contain an image representation of what DALL-E thinks a 

fruit bowl looks like with bananas, apples, and kiwis.

3 Readers might notice that our image has a friend, isn’t he cute?

Chapter 5  Generating Images



147

�Multimodality Recognition
Now that we have an image that we have generated, we can use this in a 

test of the multimodality integration. Our test will take a generated image 

from DALL-E, and we can query and ask questions about it in the “text” 

mode. We’ll again lean on using OpenAI as the source for our artificial 

intelligence needs, and we can recycle the fruit bowl we just generated for 

our next test.

Our test will consist of two items that we’ll be passing to the 

API: a prompt and an image. For the image, we’ll load it using a 

FileSystemResource and pulling from the top-level directory.

We’ll take the Resource and the text prompt. In a single sentence 
explain what is in this picture and identify every item, and 

at the end, do some simple assertions to ensure that the text description 

contains the words “banana,” “apple,” and “kiwi.”

Listing 5-7.  chapter05/src/test/java/ch05/

ImageRecognitionTest.java

package ch05;

import ch05.service.ImageRecognitionService;
import org.junit.jupiter.api.Test;
import org.springframework.ai.model.Media;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.FileSystemResource;
import org.springframework.util.MimeTypeUtils;

import static org.junit.jupiter.api.Assertions.assertTrue;

@SpringBootTest
public class ImageRecognitionTest {

Chapter 5  Generating Images



148

    @Autowired
    ImageRecognitionService imageRecognitionService;

    @Test
    void runImageRecognitionQuery() {
        �var imageResource = new FileSystemResource("rendered_

fruit_bowl.png");
        �Media renderedFruitBowl = new Media(MimeTypeUtils.

IMAGE_PNG, imageResource);
        String recognition = imageRecognitionService.identify(
                �"In a single sentence explain what is in this 

picture and identify every item.",
                renderedFruitBowl);

        System.out.println(recognition);
        assertTrue(recognition.contains("banana"));
        assertTrue(recognition.contains("apple"));
        assertTrue(recognition.contains("kiwi"));
    }

}

One thing you’ll notice is we are outputting the contents of the 

recognition object returned to stdout. We’ve left this in because during 

the testing of this book, the hallucinations sometimes cause a test to fail, 

and it helps to see why the assertions fail.

The other thing you’ll see is that we can’t quite run this yet since 

the ImageRecognitionService doesn’t exist. Let’s take a look at 

the implementation of ImageRecognitionService and see how the 

multimodality integration of interrogating an image via a prompt is done.

Chapter 5  Generating Images



149

Listing 5-8.  chapter05/src/main/java/ch05/service/

ImageRecognitionService.java

package ch05.service;

import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.model.Media;
import org.springframework.stereotype.Service;

@Service
public class ImageRecognitionService {

    private final ChatModel chatModel;

    �public ImageRecognitionService(ChatModel chatModel) {
        this.chatModel = chatModel;
    }

    public String identify(String prompt, Media media) {
        var userMessage = new UserMessage(
                prompt,
                media);

        �ChatResponse response = chatModel.call(new 
Prompt(userMessage));

        �return response.getResult().getOutput().getContent();
    }
}

We have a ChatModel available in this class which we’ll use Spring’s 

dependency injection to reference in our ImageRecognitionService.

Chapter 5  Generating Images



150

Our call to OpenAI is building a UserMessage which will contain the 

two items passed in via the test: a text prompt and the Media object. Our 

call to the API will be blocking, so we’ll use call() to get the response 

specification.

With our response, we can pass back the description from OpenAI on 

what is inside the image. For our usage and this test, we don’t need the 

metadata, but just know that it’s available if needed for your application.

Now that we have a service, our tests should pass. We’ll call the 

chapter’s test suite using Maven:

mvn -am -pl chapter05 clean test

If mercury isn’t in retrograde in the OpenAI cloud, you should see 

SUCCESS in the test. The test itself will print out the returned text from 

OpenAI, and the test itself should also pass. We have deliberately written 

a test that depends on the generation from a previously written test 

GenerateImageTest which is not a best practice so in the future best to 

avoid dependencies.

We’ve included a test run so you can see it working end to end.

[INFO] -------------------------------------------------------
[INFO]  T E S T S
[INFO] -------------------------------------------------------
[INFO] Running ch05.ImageRecognitionTest
12:26:03.366 [main] INFO org.springframework.test.context.
support.AnnotationConfigContextLoaderUtils -- Could not 
detect default configuration classes for test class [ch05.
ImageRecognitionTest]: ImageRecognitionTest does not declare 
any static, non-private, non-final, nested classes annotated 
with @Configuration.
12:26:03.405 [main] INFO org.springframework.boot.test.context 
.SpringBootTestContextBootstrapper -- Found @SpringBoot 
Configuration ch05.Ch05Configuration for test class ch05.
ImageRecognitionTest

Chapter 5  Generating Images



151

Powered by Spring Boot 3.3.0
2024-11-16T12:26:03.548-08:00  INFO 79859 --- [           main] 
ch05.ImageRecognitionTest                : Starting 
ImageRecognitionTest using Java 21.0.3 with PID 79859 (started 
by kinabalu in /Users/kinabalu/workspace/beginningspring/bsai/
code/chapter05)
2024-11-16T12:26:03.550-08:00  INFO 79859 --- [           main] 
ch05.ImageRecognitionTest                : No active profile 
set, falling back to 1 default profile: "default"
2024-11-16T12:26:04.248-08:00  INFO 79859 --- [           main] 
ch05.ImageRecognitionTest                : Started 
ImageRecognitionTest in 0.798 seconds (process running 
for 1.173)
WARNING: A Java agent has been loaded dynamically (/Users/
kinabalu/.m2/repository/net/bytebuddy/byte-buddy-agent/1.14.16/
byte-buddy-agent-1.14.16.jar)
WARNING: If a serviceability tool is in use, please run  
with -XX:+EnableDynamicAgentLoading to hide this warning
WARNING: If a serviceability tool is not in use, please run 
with -Djdk.instrument.traceUsage for more information
WARNING: Dynamic loading of agents will be disallowed by 
default in a future release
The image shows a bowl containing a red apple, a yellow apple, 
and two bananas, with sliced kiwis and kiwi seeds on a wooden 
surface.
[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time 
elapsed: 5.366 s -- in ch05.ImageRecognitionTest
[INFO] Running ch05.GenerateImageTest
2024-11-16T12:26:08.665-08:00  INFO 79859 --- [           main] 
t.c.s.AnnotationConfigContextLoaderUtils : Could not 
detect default configuration classes for test class [ch05.
GenerateImageTest]: GenerateImageTest does not declare any 

Chapter 5  Generating Images



152

static, non-private, non-final, nested classes annotated with  
@Configuration.
2024-11-16T12:26:08.665-08:00  INFO 79859 --- [           main] 
.b.t.c.SpringBootTestContextBootstrapper : Found  
@SpringBootConfiguration ch05.Ch05Configuration for test class 
ch05.GenerateImageTest
Conversion complete: ./rendered_fruit_bowl.png
[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0,  
Time elapsed: 12.88 s -- in ch05.GenerateImageTest
[INFO]
[INFO] Results:
[INFO]
[INFO] Tests run: 2, Failures: 0, Errors: 0, Skipped: 0
[INFO]
[INFO] --------------------------------------------------------
[INFO] Reactor Summary for bsai-code 1.0:
[INFO]
[INFO] bsai-code .......................... SUCCESS [  0.140 s]
[INFO] chapter03 .......................... SUCCESS [ 12.635 s]
[INFO] chapter05 .......................... SUCCESS [ 19.162 s]
[INFO] --------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] --------------------------------------------------------
[INFO] Total time:  32.062 s
[INFO] Finished at: 2024-11-16T12:26:21-08:00
[INFO] --------------------------------------------------------

One fun exercise you can try on your own is to expand your prompt to 

get more information about the media you upload to the API. We could 

imagine that uploading a PDF and asking it to summarize the contents 

could be another test of the multimodal nature of this module in Spring AI.

Chapter 5  Generating Images



153

�Lights, Camera, AI
For the last test, we’re going to re-use the code from the lights in Chapter 3,  

and we’re going to generate some images based on the lights’ properties 

we’ve defined in Ch05Configuration which we’re letting OpenAI use as a 

data source.

Here’s the process for what the following test actually does, and the 

great part about it is we’re not doing anything new here so as soon as we 

explain ourselves here we can run the test right away.

We’ve got three lights that are possible in our system and in the 

following test:

	 1.	 Ask the AI to create a prompt for DALL-E to generate 

an image of any lightbulb which is on.

	 2.	 Pass that prompt to the ImageGeneratorService 

and retrieve the Image.

	 3.	 Pass that Image back to the AI and ask it to explain 

what’s in the picture.

	 4.	 Assert that at a minimum the explanation contains 

the word red since that’s the light that should be 

turned on.

	 5.	 Run a command with OpenAI to turn off the red 

light, and turn on the green light.

	 6.	 Re-run steps 1–3 above again.

	 7.	 Assert that at a minimum the explanation contains 

the word green now since we turned off the red light 

and turned on the green in our command.

Chapter 5  Generating Images

https://doi.org/10.1007/979-8-8688-1291-0_3


154

Let’s take a look at how this works in the test below.

Listing 5-9.  chapter05/src/test/java/ch05/LightVisualizerTest.java

package ch05;

import ch03.service.UpdateChatService;
import ch05.service.ImageGeneratorService;
import ch05.service.ImageRecognitionService;
import org.junit.jupiter.api.Test;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.model.Media;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.ai.image.Image;

import org.springframework.core.io.ByteArrayResource;
import org.springframework.util.MimeType;

import java.io.IOException;
import java.util.Base64;
import java.util.List;

import static org.junit.jupiter.api.Assertions.assertTrue;

@SpringBootTest
public class LightVisualizerTest {
    @Autowired
    ImageGeneratorService generatorService;

    @Autowired
    ImageRecognitionService recognitionService;

    @Autowired
    private UpdateChatService updateChatService;

Chapter 5  Generating Images



155

    �public static final MimeType IMAGE_WEBP = new 
MimeType("image", "webp");

    String runCommand(String prompt) {
        var updateResponse = updateChatService.converse(
                List.of(
                        new UserMessage(prompt)
                )
        );

        �return updateResponse.getFirst().getOutput().
getContent();

    }

    Media imageToMedia(Image image) throws IOException {
        �byte[] binaryData = Base64.getDecoder().decode(image.

getB64Json());
        �return new Media(IMAGE_WEBP, new ByteArrayResource 

(binaryData));
    }

    @Test
    void runLightVisualizer() {
        try {
            �var initialLightbulbPrompt = runCommand("Based on 

the status of the lights red, yellow and green 
create a single sentence prompt for DALL-E of an 
realistic rendering of a lightbulb for any color 
which is turned on");

            var image = generatorService.processPrompt(
                    initialLightbulbPrompt,null
            );

Chapter 5  Generating Images



156

            Media firstLightbulbMedia = imageToMedia(image);
            String recognition = recognitionService.identify(
                    �"In a single sentence explain what is in 

this picture?",
                    firstLightbulbMedia);

            System.out.println(recognition);
            �assertTrue(recognition.toLowerCase().

contains("red"));

            �runCommand("Turn off red light and turn on green 
light");

            �var newLightBulbRenderPrompt = runCommand("Based 
on the status of the lights red, yellow and green 
create a single sentence prompt for DALL-E of an 
realistic rendering of a lightbulb for any color 
which is turned on");

            �var newLightBulbImage = generatorService.
processPrompt(

                    newLightBulbRenderPrompt,null
            );

            �Media secondLightbulbMedia = imageToMedia(newLight 
BulbImage);

            �String newRecognition = recognitionService.
identify(

                    �"In a single sentence explain what is in 
this picture?",

                    secondLightbulbMedia);
            System.out.println(newRecognition);
            �assertTrue(newRecognition.toLowerCase().

contains("green"));

Chapter 5  Generating Images



157

        } catch (IOException e) {
            �System.err.println("IO Error while writing file:  

" + e.getMessage());
        }

    }
}

Now that we have the test and it reuses existing services, we’ll again 

call the chapter’s test suite using Maven:

mvn -am -pl chapter05 clean test

Whew. We’ve got a test now performing the functions, and it should 

pass. One could imagine if you hooked up a camera that captured an 

image at some regular frequency and uploaded that capture to an AI, 

you could ask it to perform a function based on what it saw in the photo. 

Pretty neat.

�Next Steps
In our next chapter, we’ll wrap up with a discussion on navigating AI in 

engineering, the challenges, and share some best practices.

Chapter 5  Generating Images



159© Andrew Lombardi and Joseph Ottinger 2025 
A. Lombardi and J. Ottinger, Beginning Spring AI, Apress Pocket Guides,  
https://doi.org/10.1007/979-8-8688-1291-0_6

CHAPTER 6

Navigating AI 
in Engineering
Challenges and Best Practices

�A Practical Exploration of AI-Aided  
Development
In Chapter 1, we brought up a simple high-level overview of the AI 

landscape as it is today. It’s a useful chapter, not just because of the content 

it holds but because of the way it was written.

It was drafted in Asciidoctor1 (as was the rest of the book), with the 

editor suggesting minor grammar changes as it was written. These edits 

were focused on simple things like matching tenses or spelling.2

1 Asciidoctor (https://asciidoctor.org) is software for taking simple text 
content and generating a document model from it.
2 If you’re interested, the tool used for grammar and syntax was Grammarly, at 
https://grammarly.com/, which is merely one of many such tools, and this is 
not an endorsement of Grammarly over other similar tools like ProWritingAid 
(https://prowritingaid.com/), and so forth. Most of them do the same sorts 
of things, although most of them also tend to be more focused on specific types 
of writing; ProWritingAid, for example, is primarily meant for storytellers. Even 
Microsoft Word has similar grammar aids, like CoPilot.

https://doi.org/10.1007/979-8-8688-1291-0_6#DOI
https://doi.org/10.1007/979-8-8688-1291-0_1
https://asciidoctor.org
https://grammarly.com/
https://prowritingaid.com/


160

After the initial simple draft was done and revised by the author, the 

content was submitted as a whole to an LLM (ChatGPT, specifically), with 

a prompt asking for hints toward readability, ease of use, and appropriate 

topical coverage. ChatGPT then presented a potential rewrite of the 

chapter, which wasn’t quite what was intended.

That rewritten draft was then considered sentence-by-sentence and 

compared to the original. In some cases, the rewrite was indeed more 

clear, or highlighted issues in the original draft, and those changes were 

integrated into the chapter’s content. The changes were not copied or 

accepted wholesale. Any original content suggested by ChatGPT was 

carefully considered before inclusion.

Only one section included new content suggested by ChatGPT, which 

was then rewritten before being added to the draft. Apart from the quote 

from ChatGPT (on the “summary of AI”), no content was quoted from 

ChatGPT as original material.

The other chapters also utilized similar aids. Grammar checkers were 

used throughout the writing process, and their suggestions were often 

accepted. Additionally, the text was submitted to the LLM for evaluation 

to improve clarity and completeness. The code, too, was evaluated by an 

LLM for suggestions for refactoring and efficiency, with some suggestions 

accepted and others rejected.

This text was written by humans, aided by AI, and not the other way 

around.3

3 Of course, “written by humans and aided by AI, and not the other way around” 
is exactly what an AI author would be instructed to say, wouldn’t it? The main 
proof we have that humans wrote this is in the revision history of the text, which 
includes some amusing and very human errors, and the silliness of some of the 
footnotes, which the AIs kept telling us to remove.

Chapter 6  Navigating AI in Engineering



161

While this is a book and not a program, similar practices are emerging 

in programming. AI suggests revisions to code, deriving intent from the 

programmer and the code they write based on code structure, name 

choices, and the like. It can generate code based on prompts provided 

by the engineer, and it’s up to the engineer to decide what to do with 

that code.

This is not without its dangers.

�Dangers in Applying AI in Engineering
If there’s a concern around AI, it’s not about a possible future in which 

an AI overthrows humanity: it’s in how easy it is to mistake AI-generated 

content as being accurate. Generating content with AI is easy and 

becoming easier all the time, and the AIs are getting better and better at 

generating realistic output, no matter what kind of medium is being used.

AI models depend heavily on the quality and suitability of their 

training data and are highly sensitive to data quality issues: “garbage in, 

garbage out” is very apt, and given the volume of data used to train even 

the smaller LLMs, it’s very difficult to ensure that the data is correct; thus, 

it’s relatively easy for an AI to confidently assert something that is very, 

very wrong.

AIs can generate working code relatively easily, and there are many AI 

models designed specifically for this purpose; asking an AI how to write a 

function to parse a given set of inputs, yielding a specific type of output, is 

likely to give you working code for whichever language you choose, and 

you can often even specify the parsing techniques.

Chapter 6  Navigating AI in Engineering



162

For example, you could ask for the use of a packrat-style parser4 in Java, 

with examples of seven input lines, and show the data you want to extract. 

Many of the AI models will generate full working code, including tests and 

suggestions of libraries.

The code will probably5 even work. The danger here is that the AI will 

work to your specification, flaws and all, which means that the prompt 

needs to be as precise as possible, and even then, the generated code 

needs to be parsed carefully to make sure it actually does what it’s 
supposed to. It might be reliable, but you need to verify that.

You’re not getting rid of the need for a competent engineer just 

because an AI can generate code. Most experienced programmers can 

easily recount examples where a stakeholder described a complex process 

as “just process the order, it’s obvious,” only to find a complex problem 

lurking behind a simple request.

In the end, an AI is going to rely heavily on two things: your skill at 

specifying a problem clearly and precisely and your ability to evaluate 

whether the solution is appropriate.

There’s no shortcut here.

Human expertise and critical thinking remain essential in effectively 

utilizing AI tools, although as the tools improve, they can help even when it 

comes to evaluating themselves.

4 A “packrat-style parser” is a context-free parser. They tend to be quite fast, 
often very flexible, and their grammars can be a pain to write. See https://
en.wikipedia.org/wiki/Parsing_expression_grammar for more details.
5 Saying code will “probably” work should be offensive to competent 
programmers. Good programmers know whether their code works. That’s part of 
why this book was written to be test-heavy.

Chapter 6  Navigating AI in Engineering

https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://en.wikipedia.org/wiki/Parsing_expression_grammar


163

�Legal and Ethical Issues
AI also creates some interesting legal and ethical concerns. Since AI 

creates content modeled on others’ work, there’s a danger of it being too 

similar to the original, potentially infringing on copyright laws. This is 

without even considering the ethical implications of imitating someone 

else’s work product.

For example, actors have filed lawsuits against some AI models’ 

owners, claiming that their voices have been used by the AIs, without 

their permission. We could theoretically—but not necessarily legally or 

ethically—have an AI replicate a famous actor’s voice in a production, with 

no credit or compensation offered to that actor.

What’s more, there are significant concerns that extend beyond 

copyright law. There is a very real risk that AI could be misused to 

generate content that falsely represents real people, potentially damaging 

reputations, or spreading misinformation, or creating something that 

crosses the line from imitation into forgery.

Many of the models have been trained to attempt to avoid such 

violations; asking ChatGPT to create a painting in the style of Jackson 

Pollock, for example, creates a response that the image cannot be created 

due to content policy guidelines due to how uniquely identifiable Pollock’s 

style is. (Each model has its own policies here; ChatGPT is being used as 

an example only.)

With that said, developers have trained models without these 

ethical and legal guardrails: users should exercise caution and ethical 

consideration when employing these models. They’re not without 

purpose, but they should be approached with care.

If there are concerns about the legality of AI-generated content, it is 

advisable to consult a legal professional.

Chapter 6  Navigating AI in Engineering



164

�Data Visibility and Transparency
While the previous section discussed the legality of data produced by AI, 

it’s also important to consider the legal and privacy implications of the 

data you provide to an AI hosted by a third party.6

When using a third-party service like ChatGPT, as we do throughout 

this book, you’re sending information outside of your direct control. If your 

data is meant to be secure, submitting it to an external service can violate 

that security, because you don’t know what the service is doing with it, a 

concern that goes beyond AI services, because you don’t necessarily know 

what the services are doing with your data.

The service might log your data, and if those logs are hacked or 

exposed, your information could become compromised.

The service might use your contributed data to train future versions 

of its models, especially if it’s operated by a social media conglomerate. 

This means your private data could become accessible to anyone who 

formulates the right prompt to extract it.

The services themselves have a strong interest in preventing these 

scenarios, of course; it’s unlikely that any of the services are particularly 

interested in private or secured information in and of itself. Most of 

them, if not all of them, will have documentation around their security 

and training practices, and this documentation should be read carefully. 

Ultimately, it’s up to users to ensure they understand the risks and take 

appropriate measures to safeguard their information.

6 Local models offered by platforms like Ollama can offer enhanced data security 
compared to external services since they keep data on-premises. These models 
still should be checked to make sure they don’t send information offsite, or 
isolated by firewalls to prevent possible breaches of security, but local models are 
probably safer than external services. They also require significant computational 
resources and can be slower or less efficient than cloud-based services. In 
any event, it’s crucial for users to verify that even local models do not transmit 
data externally and to implement appropriate security measures to safeguard 
information.

Chapter 6  Navigating AI in Engineering



165

Note  Depending on your locale, there may also be laws in place to 
govern what data you can send to external services, including but not 
limited to GDPR,7 CCPA,8 or HIPAA.9 Please do not violate any laws.

The rule of thumb might be: If someone can use this data to 
identify the subject of the prompt, it might be too private to send 
to an AI. However, this is a generalized rule and shouldn’t be taken as 

legal advice.

As with other legal and ethical concerns, a legal professional should be 

consulted if there’s a question of whether data can be sent to an AI or not.

In summary, being mindful of the data you share with AI services is 

crucial to maintaining security and compliance with legal and ethical 

standards.

�Effective Prompt Engineering
While this book does not delve into the intricacies of prompt engineering—

doing so would likely double its length—it is important to acknowledge 

that prompts can create responses that are biased or harmful, and it’s our 

responsibility as users of AI to be aware of potential biases and address 

such concerns accordingly.

7 The text of the General Data Protection Regulation (GPDR) can be found at 
https://gdpr-info.eu/ and addresses the right and ownership of individual data 
in the European Union.
8 CCPA is the California Consumer Privacy Act, found at https://www.oag.
ca.gov/privacy/ccpa , and can be considered sort of an analog to the GDPR.
9 The Health Insurance Portability and Accountability Act (HIPAA) can be found 
at https://www.hhs.gov/hipaa/index.html and addresses patients’ rights to 
privacy in the United States.

Chapter 6  Navigating AI in Engineering

https://gdpr-info.eu/
https://www.oag.ca.gov/privacy/ccpa
https://www.oag.ca.gov/privacy/ccpa
https://www.hhs.gov/hipaa/index.html


166

To illustrate this point without delving into extensive detail, prompt 

writers should be aware of how prompts can change the responses, by 

embedding assumptions.

Assumptions in prompts might be entirely benign or innocuous: 

“Describe a teacher who loves her students,” for example, presumes 

that the teacher is female as part of the question. While this may be 

intentional—for instance, if focusing on a female teacher—it might also 

be an unintentional bias. A better query might be “Describe a teacher 

who loves their students,” using gender-neutral language, unless gender is 

intended to be part of the response.

Even if a neutral question is asked, the response might be biased. A 

prompt asking for a description of a successful entrepreneur might get 

a consistent description of a male, for example, even though there are 

certainly successful female entrepreneurs.

These biases occur because AI models are trained on existing data, 

which may reflect societal biases. As a result, the AI might be more likely 

to produce responses that align with those biases. If the models have more 

references to male business leaders than female entrepreneurs, then the 

models will themselves more likely describe entrepreneurs as male.

This reinforcement means that the common knowledge pool—which 

future models may use for training—contains even more references to 

successful male entrepreneurs. This creates a feedback loop, amplifying 

the bias without any malicious intent.

Models being trained on common knowledge also have to wrestle with 

the possibility that common knowledge is wrong. An engineer had a rather 

appropriate observation on LinkedIn:

Chapter 6  Navigating AI in Engineering



167

I’m going to be very wary of large-language models and AI in 
general until I find one that can say, “I don’t know,” when I ask 
a question about a technical matter. Generally, they behave 
like really eager interns that would rather make up an answer 
than admit to not knowing the answer.

—Paul Parks, https://www.linkedin.com/posts/
paulmooreparks_ai-llm-activity-

7240264719364673536-GpFJ

Therefore, it’s crucial for anyone interacting with AI systems to continually 

remain vigilant about these biases and actively work to mitigate them in 

pursuit of accuracy, honesty, and integrity.

�Next Steps
We’ve reached the end of the journey for this particular book.

We’ve tried to focus on those elements from Spring AI that would prove 

most useful for most programmers, while acknowledging that there are a 

lot of use cases that go deeper in nearly everything we’ve touched.

Such is the nature of an introductory book. We’d like to invite you to 

explore and create using the technology, going as far as your imagination 

and skills can take you, and we wish you success in all that you do; show us 

what you’ve done, and tell us what we can do better!

Thank you.

Chapter 6  Navigating AI in Engineering

https://www.linkedin.com/posts/paulmooreparks_ai-llm-activity-7240264719364673536-GpFJ
https://www.linkedin.com/posts/paulmooreparks_ai-llm-activity-7240264719364673536-GpFJ
https://www.linkedin.com/posts/paulmooreparks_ai-llm-activity-7240264719364673536-GpFJ


169© Andrew Lombardi and Joseph Ottinger 2025 
A. Lombardi and J. Ottinger, Beginning Spring AI, Apress Pocket Guides,  
https://doi.org/10.1007/979-8-8688-1291-0

Index

A, B
AI, see Artificial intelligence (AI)
API, see Application programming 

interface (API)
Application programming interface 

(API), 25
Artificial intelligence (AI)

approaches, 3
assumptions, 166
content generation, 161
costs/high-quality/large 

model, 10, 11
data quality issues, 161
data/reasoning process, 57–59
definition, 1, 3
external service, 164
features, 1
Grammar checkers, 160
information blenders, 7
legal and ethical concerns, 163
LLMs (see Large Language 

Models (LLMs))
Markov chain, 4, 6
matching tenses/spelling, 159
mathematical models, 3
prompt engineering, 165–167

rewritten draft, 160
services, 8, 9, 164, 165

Asciidoctor, 159
Audio process/generation

AudioTextController, 116
definition, 95
integrations, 96
real-world application, 113–120
text-to-speech (see Text-to- 

speech technology)
TextToSpeechRequest, 115
transcription

FLAC file, 107
properties, 112, 113
response specification, 110
testing process, 107–112
TranscribeService, 109, 110

voice assistant
configuration, 126, 127
definition, 120
configuration, 124–126
pom.xml file, 122–124
task process, 121–131
VoiceAssistant 

Service, 128–130
VoiceAssistantTest class, 127, 

128, 130, 131

https://doi.org/10.1007/979-8-8688-1291-0#DOI


170

C
ChatGPT, 3, 12
CNNs, see Convolutional Neural 

Networks (CNNs)
Convolutional Neural Networks 

(CNNs), 133

D, E, F, G, H
Data structure, 57

human interaction, 93
providing access, 71

apply() method, 80
buildOptions() method, 90
content summary, 72
converse() method, 90
entity() method, 88
light information, 81–87
RequestChatService, 75–77
RequestLightStatus 

Function, 78, 79
RequestLightStatusTest, 

74, 75, 80
Spring configuration, 72
structured output, 87–92
UpdateChatService, 83
UpdateLightStatus 

Function, 81
UpdateLightStatusTest, 85
UpdateLight 

StructuredTest, 90
real world application, 59–71

Different models, 33–36

I
Image recognition/generation

application 
configuration, 136–139

computer vision systems, 133
concepts, 133
DALL-E generation, 146, 147
diffusion models, 134
feature-based methods, 133
GenerateImageTest, 141–143
ImageGenerator 

Service, 144, 145
lights/camera, 153–157
multimodality 

integration, 147–152
OpenAiImageApi, 139–141
pom.xml file, 135, 136
POSIX shell, 134
properties, 139
text and visual concepts, 141
WebpToPngConverter, 143, 144

J, K
Java, Maven project 

structure, 13–22
Java programming, 11

L
Large Language Models (LLMs), 3

definition, 6
current events, 58

INDEX



171

LinkedIn, 166
LLMs, see Large Language 

Models (LLMs)

M, N
Maven project, 11

audio process/generation, 118
project structure, 13–22
text-to-speech  

technology, 104

O
OpenAI

access key, 21
API settings page, 26
application.properties, 28
ChatClient, 27, 28
configuration, 26
env file, 26
FirstChatService 

implementation, 31, 32
keys, 25
lightbulbs, 59–61
project creation, 24
response  

specification, 29, 30
screenshot, 32
settings, 25
settings screen, 23
spring-boot-starter-web, 18–20

openHAB, 59

P, Q, R
Project structure

bsai-code, 14
.env file, 21, 22
Maven directory structure, 14
OpenAI, 18–20
pom.xml, 14–18
POSIX creation, 14

S
Smart lightbulbs

BaseLightTests class, 67–69
directory structure, 60
getBeansOfType() method, 65
getLights(), 65
light class, 62, 63
LightService, 69–71
configuration class, 66–68
pom.xml, 60–62
services, 63–65

Spring framework AI, see Artificial 
intelligence (AI)

abstraction, 22
audio (see Audio process/

generation)
chat models, 22
coarse abstractions, 22
conversation/roles, 48

ConversationTests, 50–53
interactiveConversation() 

method, 53

INDEX



172

Prompt object, 48
system message, 55
UpdateChatService, 49, 50
UserMessage, 54, 55

different models, 33–36
image (see Image recognition/

generation)
lightbulbs (see Smart  

lightbulbs)
OpenAI, 22–26
temperature

differences, 43, 44
JaccardSimilarity 

Calculator, 39–41
n-grams, 38, 43
OpenAiChatOptions, 37

probability mass, 37
testing code, 41, 42
VariabilityTests, 44–47

T, U, V, W, X, Y, Z
Text-to-speech technology

application 
configuration, 99, 100

history, 96
OpenAiAudioSpeech 

Options, 105–107
pom.xml file, 97–99
project directory structure, 97
properties, 100
SpeechTTSTest, 101, 102
TextToSpeechService, 103, 104

Spring framework AI (cont.)

INDEX


	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction
	AI Is Everywhere
	What Is AI, Really?
	The Scope of This Book
	How Can AIs Be Used?
	How Do You Choose an AI?
	How Much Does It Actually Cost?
	What This Book Isn’t
	Next Steps

	Chapter 2: Getting Started
	The Project Structure
	Spring AI
	Getting the OpenAI Key
	Our First OpenAI Query

	Choosing a Different Model
	Temperature
	Conversations and Roles
	Next Steps

	Chapter 3: Asking Questions and Using Data
	Interacting with an AI
	Working with the “Real World”
	Providing Access to Your Data
	Building the Callable for Spring AI
	Changing a Light
	Structured Output

	Applying This in Your Code
	Next Steps

	Chapter 4: Working with Audio
	Generating and Processing Audio
	The AI Spoken Word
	Transcription
	REST Example
	A Simple Voice Assistant
	The Voice Assistant Task


	Next Steps

	Chapter 5: Generating Images
	Generating and Recognizing Images
	Image Generation
	Multimodality Recognition
	Lights, Camera, AI

	Next Steps

	Chapter 6: Navigating AI in Engineering
	A Practical Exploration of AI-Aided Development
	Dangers in Applying AI in Engineering
	Legal and Ethical Issues
	Data Visibility and Transparency
	Effective Prompt Engineering
	Next Steps

	Index
	df-Capture.PNG

